Промывочные жидкости и растворы - Сроки схватывания

Сроки схватывания

 

Сроки схватывания (твердения) — один из важнейших пара­метров тампонажного раствора — определяются в статических условиях прибором ВИКа (рис. 67). Прибор состоит из кругло­го металлического стержня 4, свободно перемещающегося в вертикальной обойме 5 станины 1. Для закрепления стержня на желаемой высоте служит зажим 2. В нижнюю часть стержня 4 ввинчивается стальная игла 6 диаметром 1,1 мм и длиной 50 мм. На кронштейне станины укреплена шкала 3. В комплект прибора входит кольцо 7 с подставкой 8. Масса подвижной си­стемы прибора 300 г.

Для определения сроков схватывания готовят 300 см3 там­понажного раствора, который после трехминутного перемеши­вания заливается в кольцо 7. Перед началом измерения игла 6 должна слегка касаться поверхности раствора. Способ основан на периодическом измерении глубины погружения в исследуе­мый раствор стержня (иглы) площадью сечения 1 мм2 под дей­ствием нагрузки в 3 Н. По мере загустевания раствора движение иглы в нем замедляется. Время, прошедшее от момента затворения до момента, когда игла не доходит до дна сосуда с рас­твором на 1 мм, называют временем начала схватывания. Вре­мя, прошедшее от момента затворения до момента, когда игла погружается в раствор не более чем на 1 мм, называют време­нем конца схватывания.

Сроки схватывания тампонажных растворов — условные па­раметры, так как в их основу положены условные критерии. Процесс упрочнения раствора и превращения его в тампонаж­ный камень по физико-химической сути не имеет критических точек, делящих его на различные стадии. На сроки схватыва­ния влияют давление, минерализация пластовых вод и химиче­ский состав тампонируемых пород. Однако попытки выполнять измерения с учетом этих факторов при существующих методах определения сроков схватывания не имеют смысла. Такой учет дает лишь качественную картину изменения процесса схваты­вания.

В то же время для успешного тампонирования нужно четко знать время, которым располагают исполнители для проведе­ния работ. В этом отношении измеряемые сроки схватывания дают самое общее представление об этом времени. Если начало схватывания наступает, например через 1 ч, это не значит, что исполнитель работ имеет в своем распоряжении этот час. По­этому, готовя раствор для тампонирования скважины, исполни­тели стремятся подстраховаться и увеличить время начала схватывания, а это приводит к резкому уменьшению эффектив­ности тампонажных работ.

Необходимо знать кинетику нарастания прочности структу­ры раствора во времени. Для этого измеряют пластическую прочность структуры раствора.

Пластическая прочность Рт  характеризует прочность струк­туры раствора при пластично-вязком разрушении, измеряется на приборе ВИКа по методу акад. П. А. Ребиндера, усовершенст­вованному М. С. Винарским. Вместо иглы прибор снабжается комплектом конусов из стали, алюминия или органического стекла с углами при вершине 30°, 45°, 60°, 90°. Кроме того, не­обходимо иметь кольцо большего размера (диаметром 127 — 146 мм) и соответствующего размера подкладную пластину.

Методика измерений следующая. В кольцо 7 высотой 40 мм (см. рис. 67), установленное на пластине-поддоне 8, заливают тампонажный раствор. Поверхность раствора тщательно вырав­нивают. Подвижный стержень 4 прибора с укрепленным в ниж­ней части конусом (показан пунктиром) устанавливают таким образом, чтобы конус чуть касался поверхности раствора, и в таком положении фиксируют зажимом 2. Через определенное время выдержки зажим отпускают, подвижную систему осво­бождают и конус погружается в раствор на определенную глу­бину. Величина погружения фиксируется по шкале 3.

Затем конус поднимают, насухо протирают и устанавливают в исходное положение. Кольцо 7 с пробой раствора смещается с пластиной 8 по плите-основанию таким образом, чтобы после очередного погружения конуса центры лунок находились на рас­стоянии не менее трех диаметров предыдущей лунки.  Через заданное время выдержки нажатием    кнопки   зажима    2    конус вновь освобождается, и измеряют глубину его погружения. Пластическая прочность Рт (в Па) вычисляется по формуле Pm = Kα(G/h2),  (X.2) где Кα— коэффициент, зависящий от угла конуса; G— вес по­гружаемой системы, Н; h— глубина погружения конуса в там­понажный раствор, м.

Коэффициент Кα,определяется из выражения:

                        clip_image064

clip_image066

(α — угол при вершине конуса).

Так как пластическая прочность нарастает во времени, глу­бина погружения конуса постепенно уменьшается. Для повыше­ния точности измерений при достижении h = 0,5÷0,8 см конус заменяют более острым. Если использован самый острый конус комплекта, подвижную систему дополнительно нагружают, для чего в верхней ее части устанавливается съемный груз, величи­на которого зависит от конкретных условий опыта.

clip_image067Рекомендуется одновременно исследовать не менее трех об­разцов раствора и пластическую прочность выбрать как среднее из трех измерений. По результатам измерений строят кривую изменения пластической прочности во времени. Общий характер кривых для различных растворов приведен на рис. 68. Кривая 1 характерна для цементного раствора, кривая 2 — для глинисто­го раствора с содержа­нием цемента 10%.

Общий характер кри­вых отражает физико-хи­мические изменения, про­исходящие в растворе с течением времени. Снача­ла прочность нарастает медленно, затем лавино­образно ускоряется, пос­ле чего вновь замедляет­ся, асимптотически при­ближаясь к конечному значению. На каком-то этапе лавинообразного участка упрочнения пла­стическое разрушение структуры переходит в хрупкое. Но раствор не прокачивается задолго до этого момента.

Знание   кинетики   нарастания прочности позволяет оценить время, которым мастер располагает при неполадках в процессе закачки раствора. На этапе медленного набора прочности структуры раствора плас­тическую прочность можно считать аналогом статического на­пряжения сдвига. Тогда, если раствор находится в трубах дли­ной L, сопротивление раствора сдвигу Pθ определяется по формуле:

clip_image069

 

где рст —гидростатическое давление раствора в бурильных тру­бах; Па; d— внутренний диаметр бурильных труб, м.

Отсюда при максимальном давлении, развиваемом насосом, рθmax,получим критическое значение пластической прочности рт кр ,при котором насос не может продавить раствор в трубах: Рт кр = [(pθmax+pст) d]/4L                                           (Х.5)

Зная Рт крпо кривой нарастания пластической прочности во времени для данного раствора можно найти время, за которое структура достигла критической прочности. Конечно, и здесь речь идет о приблизительной оценке, так как трудно учесть ряд факторов: время предварительного перемешивания, степень со­ответствия для данного времени статического напряжения сдви­га и пластической прочности, температуры в скважине и др. Но полученная оценка является количественной, отражает в дина­мике физико-химию процесса и может уточняться по мере по­лучения дополнительной информации.

Измерять пластическую прочность можно непосредственно на буровых установках перед проведением тампонажных работ.