Промывочные жидкости и растворы - ТАМПОНАЖНЫЕ СМЕСИ НА ОСНОВЕ ЦЕМЕНТОВ

ТАМПОНАЖНЫЕ СМЕСИ НА ОСНОВЕ ЦЕМЕНТОВ

 

Это — твердеющие дисперсные системы, простейшие из кото­рых представляют собой смесь цемента и воды. Свойства раство­ров и тампонажного камня регулируются в широких пределах применением всех перечисленных выше добавок и реагентов. Вид и количество добавок определяют часто не только свойства раствора и особенности его поведения в тех или иных условиях, но и название. При добавке полимеров цементные растворы на­зываются полимерцементными. Иногда в названии отражается и вид полимера, например метасоцементный раствор, полиакрил-амидцементный раствор и т. д.

При введении глины цементные растворы могут называться гельцементными, глиноцементными. В то же время небольшие добавки глины, используемые для повышения седиментационной устойчивости цементных растворов и снижения водоотдачи, могут и не отразиться в названии. Цементный раствор с добавкой активного ускорителя схватывания, например жидкого стекла, может называться быстросхватывающейся смесью, Такое же на­звание может иметь и тампонажный раствор другого состава. Все это приводит к неоправданному многообразию названий це­ментных растворов и затрудняет их классификацию.

Особенность цементных растворов — их необратимое затвер­девание в результате сложных физико-химических превращений при взаимодействии цемента с водой затворения.

 

Образование цементного камня.  Контракция

 

Образование тампонажного камня из растворов на основе цементов связано с образованием трехкальциевого гидроалюми­ната. Процесс этот происходит условно в два этапа.

В начальный момент затворения цемент эффективно взаимо­действует с водой. Мельчайшие частицы его растворяются, бо­лее крупные гидратируются с растворением вещества поверх­ности. Затем наступает период замедления этих реакций. В это время цементный раствор представляет собой пластическую мас­су. На поверхности частичек образуются сольватные оболочки и положительные электрические заряды, между ними возникают силы отталкивания. Наряду с этим зерна цемента в массе рас­твора настолько сконцентрированы, что между ними возникают силы взаимного притяжения. Так как на острых краях цемент­ных зерен толщина сольватной оболочки меньше, чем на осталь­ных участках поверхности, то плотность электрического заряда здесь меньше и, следовательно, меньше сила отталкивания. Од­новременно в результате химического взаимодействия состав­ляющих цемента появляются гидратные новообразования. В си­стеме образуется коагуляционная структура. Завершается пер­вый этап (индукционный).

Пластическая прочность структуры к этому моменту низка, темп нарастания ее медленный и зависит от связывания воды, степени диспергирования цемента в воде и накапливания гидратных новообразований. Такая система тиксотропна, связи между частицами в ней обеспечиваются через гидратные обо­лочки и поэтому слабы. После механического разрушения си­стемы эти связи восстанавливаются. Разрушение структуры (на­пример, в процессе перемешивания) не приводит к вредным по­следствиям.

Второй этап характеризуется возникновением и развитием кристаллизационной структуры трехкальциевого гидроалюмина­та ЗСаО•А12О3•6Н2О, который кристаллизуется в кубической сингонии. Поверхность и объем частиц увеличиваются настоль­ко, что возникают молекулярные связи между ними. Этот про­цесс сопровождается интенсивным нарастанием прочности структуры. Связь между частицами здесь отличается высокой прочностью и необратимым характером разрушения. Разруше­ние структуры на этом этапе приводит к уничтожению контак­тов срастания и резкому снижению прочности. Если перемешать раствор в достаточно поздний период твердения, то тампонаж­ный камень может вообще не образоваться.

Длительность каждого этапа и скорость перехода первого этапа во второй обусловлены скоростью накапливания гидратных новообразований, которая зависит от водоцементного отно­шения, качества цемента и воды затворения, наличия добавок и реагентов, условий приготовления и цементирования.

Состав и свойства цемента, как уже отмечалось, определя­ются соотношением составляющих минералов. Характер накап-ливания гидратных новообразований зависит во многом от ско­рости гидратации. Многочисленные исследования показали, что чистые цементообразующие минералы по скорости гидратации располагаются в следующем порядке  (в сторону уменьшения): 

 

clip_image080

 

Так как процесс цементирования сопровождается непрерыв­ным перемешиванием цементного раствора, очень важно качест­во схватывания раствора в таких условиях. Во многом процесс схватывания зависит от того, в какой период твердения нача­лось перемешивание, с какой скоростью и как долго оно проис­ходит.

Если перемешивание продолжается достаточно долго, то схватывание может не наступить. Прореагировав, цементный раствор превратится в землистую рыхлую массу. Если переме­шивание прекращается во время индукционного периода, то оно не препятствует схватыванию и не оказывает вредного влияния на свойства цементного камня. Напротив, он получается более плотным и прочным. При этом с увеличением длительности и интенсивности перемешивания в пределах этого периода поло­жительное влияние перемешивания на свойства камня возраста­ет. По П. А. Ребиндеру, это объясняется разрушением при пе­ремешивании возникающей в начальный период рыхлой и мало­прочной структуры, вместо которой образуется более плотная и прочная структура гидросиликатов кальция.

При постоянном перемешивании происходит непрерывное разрушение образующейся структуры с увеличением концентра­ции мельчайших частиц продуктов гидратации. Появление во все возрастающем количестве таких частиц с большой удельной поверхностью значительно интенсифицирует процесс структурообразования. В результате этого сопротивление перемешиванию постепенно возрастает. Если интенсивность перемешивания не­достаточна для полного разрушения структуры, то в некоторый момент происходит лавинное нарастание сопротивления. Время от затворения до этого момента называется временем загустевания. Продолжение перемешивания в последующий период приведет к необратимому разрушению структуры, а даже крат­ковременная остановка — к схватыванию раствора с полной по­терей подвижности.

В процессе цементирования загустевание раствора может привести к такому росту давления в нагнетательной линии, ко­торое превысит технические возможности бурового насоса, и он может остановиться, что приведет к практически мгновенному схватыванию цементного раствора в скважине и нагнетательной линии.

                     clip_image082

    Рис. 71. Кривые загустевания це­ментного раствора при 22 °С и ин­тенсивности перемешивания:

    1 — 15 об/мин; 2 — 60 об/мин

 

clip_image084

 

Рис.  72.   Зависимость   сроков   схва­тывания цементного раствора от тем­пературы а и давления б:

 1— начало    схватывания;    2 — конец   схва­тывания

 

Количественная оценка влияния перемешивания затруднена, так как воспроизвести при исследованиях все условия цементи­рования практически невозможно. Представление о характере изменения скорости загустевания раствора в процессе переме­шивания дают исследования на консистометрах  (рис. 71).

Повышение температуры интенсифицирует процессы, проис­ходящие в цементных растворах, в первую очередь вследствие усиления гидратации. Кроме того, изменяется растворимость минералов цемента в жидкой фазе, что увеличивает скорость роста гидратных новообразований. Влияние температуры на процесс схватывания цементного раствора с В/Ц = 0,4 показано на рис. 72, а.

Процесс схватывания значительно замедляется при низких, и особенно при отрицательных, температурах. Растворение в жидкой фазе цементного раствора продуктов гидратации и гид­ролиза соединений цемента понижает температуру ее замерза­ния и делает возможным твердение раствора при температурах несколько ниже нуля. Полностью гидратация прекращается при температуре около —10 °С.

Воздействие давления также сокращает сроки схватывания цементных растворов. Характер изменения сроков схватывания с ростом давления приведен на рис. 72, б.

Одновременное действие дав­ления и температуры еще более интенсифицирует процессы, про­исходящие при схватывании це­ментных растворов (рис. 73). 

Из сказанного выше следует, насколько сложно учесть сово­купное влияние факторов, опре­деляющих скорость превращения цементного раствора в камень, с тем чтобы правильно выбрать свойства раствора. В то же время задача эта чрезвычайно актуальна.

Превращение цементного рас­твора в камень сопровождается контракцией — сокращени­ем суммарного объема цемента и воды в процессе гидратации. Это обусловлено перестройкой кристаллических решеток исход­ных минералов клинкера из атомных в молекулярные при их гидратации. Различают физическую и химическую контрак­цию. Преобладает контракция, обусловленная в основном хи­мическими процессами.

Внешне контракция проявляется поглощением воды (или газа), находящейся в контакте с твердеющим цементным рас­твором. При полной гидратации цементных зерен поглощение прекратится. Максимальное количество поглощенной воды (контракция) составляет 7—9 мл на 100 г и зависит от актив­ности цемента. Чем выше активность цемента, тем выше конт­ракция. У высокоактивных цементов контракция через 28 сут твердения достигает 50—65% предельной и в дальнейшем ее интенсивность значительно понижается. Цементы низких марок к этому сроку имеют контракцию 30—40% от предельной.

При твердении цементных растворов находящиеся с ними в соприкосновении буровые растворы и их фильтрационные корки обезвоживаются, становятся трещиноватыми, пористыми. Это объясняет явление нарушения герметичности при удачном каза­лось бы цементировании. Поэтому при выборе свойств цемент­ного раствора и их регулировании необходимо считаться с воз­можными при этом характеристиками цементного камня.