Основы теории взрывчатых веществ

Основы теории взрывчатых веществ

  

Взрывные работы в инженерной практике горного дела - это важнейший способ разрушения горных пород, являющийся главным технологическим процессом при строительстве шахт, добыче полезных ископаемых и проведении горных выработок (объём взрывных работ в технологическом цикле горного производства достигает 90% и более).

Оптимальное использование энергии взрыва в промышленных целях возможно только на основе правильной оценки важнейших характеристик взрывчатых веществ и реакций их взрывчатого превращения (величина кислородного баланса, а также величина теплового эффекта реакции взрыва, химический состав, масса и плотность заряда, геометрия его закладки и т.д.).

 

 

Введение

 

Взрывом называют чрезвычайно быстрое химическое или физическое превращение вещества (или системы), сопровождающееся таким же быстрым переходом потенциальной энергии в механическую работу. Характерным признаком взрыва является образование ударной волны (УВ) в среде, примыкающей к месту взрыва. Причиной возникновения УВ является быстрое расширение (со сверхзвуковой скоростью в данной среде) газов или паров, содержащихся до взрыва или возникших в системе в момент взрыва. Взрывы делят на физические и химические.

При физических взрывах, вызванных, например, взрывом парового котла, баллонов с газом и т.п., изменяется только физическое состояние вещества с сохранением постоянства его химического состава. В горном деле примерами таких взрывов являются отбойка угля при помощи металлических патронов "кардокс", содержащих жидкую углекислоту, или металлических патронов "эрдокс", содержащих сжатый воздух.

Химическое превращение вещества является обязательным условием химического взрыва. Взрывчатое химическое превращение вещества обуславливается наличием трех факторов: высокой скоростью, образованием газов или паров, выделением теплоты.

Общими чертами физических и химических взрывов является то, что выделяющаяся энергия при взрыве переходит в механическую работу, которую совершают сжатые газы, имевшиеся до взрыва (физический взрыв) или образовавшиеся в момент взрыва (химический взрыв). Высокая скорость выделения энергии как следствие высоких скоростей изменения состояния вещества и весьма высокое давление (от десятков до сотен тысяч атмосфер) сжатых газов предопределяет особый быстропротекающий разрушительный характер механического действия взрыва.

 

 


 

Ударные волны

 

Быстро расширяющиеся сжатые газы вызывают в окружающей среде (газовой, жидкой, твердой) скачок давления или волну возмущений, которую называют ударной волной. Скорость распространения ударной волны в среде всегда превышает скорость звука этой среды. Линейная зависимость скорости ударной волны от параметров среды записывается следующим образом:

clip_image002 (1.1)

где D – скорость ударной волны; С – скорость звука в среде; l – коэффициент (находят в таблицах или определяют экспериментально); U – массовая скорость частицу за фронтом ударной волны.

При взрыве одного и того же взрывчатого вещества (ВВ) одинаковой

массы в воздухе, воде и в горной породе скорости соответствующих ударных волн и давления будут подчиняться неравенствам:

Dгорн.п.>Dвод.>Dвоздух; Ргорн.п.вод.воздух. (1.2)

Фронт ударной волны можно представить как линию, разделяющую два принципиально различных физических состояния в одной среде. Состояния, возникшего в результате прохождения ударной волны, и невозмущенной среды, по которой УВ еще не прошла. Таким образом, фронт УВ, распространяющийся со сверхзвуковой скоростью в среде, представляет скачкообразное изменение давления, температуры и плотности. На некотором расстоянии от заряда ВВ по среде распространяется ударная волна, которая с расстоянием постепенно вырождается в звуковую, т.е. D стремится к С при U > 0.

Ударная волна отличается от упругой тем, что создает поток вещества, следующий за ее фронтом. Расстояние, на котором ударная волна ослабляется до звуковой, в газе намного больше, чем в твердом веществе. При заданном диаметре заряда это расстояние в воздухе составляет несколько десятков и даже сотен диаметров заряда, в воде – около 2–3 диаметров, в твердом теле – меньше одного диаметра.

Условия на фронте ударной волны (часто говорят "на ударном скачке") особенно удобно записывать в следующем виде:

(здесь индексом "0" и "1" обозначены соответственно параметры невозмущенной среды и величины, характеризующие состояние вещества, сжатого

ударной волной)

 

закон сохранения массы:                             clip_image004,                       (1.3)

 

 

закон сохранения количества движения:

 

                                                       clip_image006,                         (1.4)

 

закон сохранения энергии:

 

                                                       clip_image008.                       (1.5)

Обычно считается, что невозмущенная среда находится в состоянии покоя. Но при выводе уравнений сохранения массы (1.3), импульса (1.4) и энергии (1.5) предполагалось, что имеется начальная скорость U0. Этот более общий характер решения в некоторых случаях оказывается полезным.

Если считать, что невозмущенная среда покоится и U0=0, пренебрегая начальным давлением Р0, уравнения (1.3) - (1.5) можно переписать в более удобном для расчетов виде:

 

clip_image010; (1.6)

 

clip_image012;  (1.7)

 

clip_image014,  (1.8)

где V0 и V1 соответственно начальный и конечный объем; Е1 – внутренняя энергия; Р1 – давление в среде; clip_image016

Ширина фронта ударной волны в воздухе на уровне моря составляет 0,025 мкм (для сравнения: длина волны в инфракрасной области примерно равна 1 мкм). При распространении ударной волны в любой среде давление, плотность и температура в возмущенной области увеличиваются во много раз. Поэтому люди и животные, попавшие в зону действия ударной волны, гибнут, а сооружения разрушаются. Кроме этого, поток воздуха, возникающий за фронтом ударной волны, также наносит большой ущерб живым организмам и сооружениям. На рис.1 показан профиль ударной волны в координатах давление - расстояние.

Если профиль давления ударной волны в среде рассмотреть во времени, то окажется, что Рmax (максимальное давление) падает быстро - обратно пропорционально расстоянию (1/R). На рис.2 представлена схема, изображающая взрыв заряда ВВ в моменты времени t1, t2 и t3. Образовавшийся при взрыве газ "толкает" взрывную волну с крутым фронтом, давление в которой падает с увеличением расстояния.

clip_image018

Рис.1 Профиль давления при взрыве:

clip_image020– зона разрежения (Р < Р0); в этой зоне поток вещества будет направлен в сторону, противоположную движению фронта ударной волны, т.е. к источнику взрыва; R – расстояние. Стрелками показано направление движения фронта ударной волны и частиц окружающей среды

Газ, образовавшийся при взрыве, расширяется до конечного колеблющегося объема, в то время как объем воздуха, охватываемый и нагреваемый ударной волной, растет с увеличением расстояния – ударная волна расходует свою энергию и затухает.

Избыточное давление (в Па) на фронте ударной волны в воздухе при

взрыве наземного заряда ВВ массой q рассчитывают по формуле Г.И. Покровского:

clip_image022  (1.9)

где R – расстояние от заряда до измеряемой точки.

Если заряд ВВ взрывается над поверхностью земли, то давление можно найти из следующего выражения:

clip_image024 (1.10).

Избыточное давление на преграде при отражении ударной волны Ротр легко рассчитать, используя известную формулу:

clip_image026 (1.11)

 

где Рв - давление ударной волны в воздухе; Р0 - атмосферное давление или начальное давление в среде.

Важным параметром воздушных ударных волн является время действия фазы сжатия (с) tф.сж.:

clip_image028 (1.12).

clip_image030

Рис.2 Схематическое изображение взрывов цилиндрического или сферического заряда ВВ.

 

 

 


 

Формы химического превращения взрывчатых веществ

 

В зависимости от типа взрывчатого вещества (ВВ), условий возбуждения (инициирования) процессы химического превращения могут протекать в различных формах с различными скоростями, отличающимися на порядок и более. К основным формам химического превращения относятся термическое разложение и горение (дозвуковые процессы), детонация (сверхзвуковой процесс).

Термическое разложениеВВ является гомогенным процессом, протекающем во всем объеме заряда при данной температуре. Скорость термического распада ВВ измеряется числом молей, реагирующих в единицу времени в единице объёма - моль/(с·см3). Таким образом, скорость термораспада соответствует данной температуре и одинакова во всех точках объема ВВ. Основные продукты разложения – оксиды горючих элементов (СО, СО2, Н2О др.), азот, альдегиды, кислоты и т.п. Термическое разложение может завершиться при определенных условиях тепловым взрывом.

Горение ВВявляется самораспространяющимся гетерогенным направленным процессом с выраженной зоной химической реакции, разделяющей исходное вещество и продукты горения. Как и в случае термического разложения, продуктами горения являются СО, СО2, Н2О, N2. Горение протекает за счет химических реакций между окислителем и горючими компонентами, содержащимися в составе ВВ, и определяется механизмом передачи энергии из зоны химической реакции в примыкающий к ней слой исходного вещества.

Так как основные составляющие процесса тепло- и массопереноса при горении (конвекция, диффузия, теплопроводность) медленные, то и процесс горения протекает медленно - с дозвуковой скоростью. Обычно линейная скорость горения составляет несколько миллиметров в секунду (редко десятки и сотни миллиметров в секунду). Скорость горения существенно зависит от массы ВВ и внешних факторов – давления и температуры. В весьма ограниченном пространстве давление повышается быстро и горение может перейти в детонацию. В связи с этим уничтожение ВВ сжиганием проводят на открытых площадках.

Известна эмпирическая зависимость линейной скорости горения (V) от давления:

clip_image032 (1.13)

где Р – давление; а и b – постоянные; n – показатель степени, колеблющийся от 0 до 1. При значениях n больше единицы возможен переход горения в детонацию.

Основным видом реакции медленного термического распада ВВ является мономолекулярный распад, на который накладываются вторичные реакции с участием продуктов первичного распада. Ускорение реакции распада особенно активно происходит при повышении температуры ВВ. Если приход тепла при реакции преобладает над процессом его отвода в окружающую среду, то возможно прогрессивное нагревание ВВ и в дальнейшем значительный рост реакции, а в итоге - тепловой взрыв. Такая критическая точка называется температурой вспышки ВВ. Или другими словами, та минимальная температура, при которой в течение условно заданного отрезка времени подвод тепла становится больше теплоотвода и химическая реакция вследствие самоускорения принимает характер взрывчатого превращения, называется температурой вспышки.

Стационарное горениепредставляет собой процесс химического превращения, распространяющийся с малыми скоростями (миллиметры в секунду) и охватывающий последовательно слои вещества. Распространение горения происходит путем теплопередачи. В случае если отвод продуктов горения затруднен, увеличивается поверхность горения или была начальная скорость горения высокой, то медленное горение может перейти в детонацию, либо во взрывное горение. При известных условиях детонация или взрывное горение могут перейти в медленное (стационарное). Например, при переуплотнении ВВ в результате повышенного давления. Такие процессы в шахтах называют выгоранием зарядов в шпурах.

Детонация- это процесс химического превращения ВВ, сопровождающийся выделением теплоты и распространяющийся с постоянной скоростью, превышающей скорость звука в данном веществе. В отличие от горения детонация представляет собой комплекс мощной ударной волны и следующей за ее фронтом зоны химического превращения вещества.

Исходная структура взрывчатых веществ является термодинамически метастабильной. Перед достижением более стабильного состояния с меньшей энергией система должна пройти через промежуточное менее стабильное состояние с повышенной энергией, это означает как бы наличие барьера, препятствующего непрерывному превращению, если при этом не обеспечена необходимая активация процесса. Химические превращения ВВ в конечные продукты взрыва могут быть инициированы путем подвода тепла, механической энергии (удар, трение), либо другими видами воздействий.

На рис.3 в качестве иллюстрации процесса графически представлено изменение свободной энергии ВВ в процессе химического превращения. В исходном состоянии ВВ обладает некоторым избытком внутренней энергии, который и определяет его термодинамическую метастабильность. Переход из исходного состояния, которое отвечает превращению в более стабильное, сдерживается энергетическим барьером –clip_image034 Для системы (ВВ) наименьший прирост энергии clip_image035, позволяющий перейти через барьер, представляет собой свободную энергию активации реакции, и система (ВВ) с максимальной свободной энергией FA является нестабильной, находясь в "переходном" или "активированном" состоянии. Минимальный внешний импульс, способный, например, инициировать переходы "ВВ > продукты взрыва", для различных взрывчатых веществ будет различным и соответствовать величине clip_image034[1] для каждого ВВ. Так, для первичных инициирующих ВВ эта величина будет намного больше, чем для обычных бризантных ВВ. Поэтому для возбуждения реакции взрывчатого превращения в первичных инициирующих ВВ требуется меньшая энергия активации clip_image036, чем для бризантных ВВ.

При взрыве взрывчатые вещества превращаются в химически устойчивые системы и это превращение может протекать с разной скоростью. Скорость взрывчатого превращения- это быстрота распространения этой реакции по взрывчатому веществу. Скорость взрывчатого превращения для данного ВВ является постоянной величиной. В зависимости от химической природы ВВ, его физических характеристик, геометрических параметров (для промышленных ВВ – величины размеров частиц, содержания влаги и других характеристик) скорость взрывчатого превращения колеблется в больших пределах (1,0-10,2 км/с).

clip_image038

Рис.3 Изменение свободной энергии системы (ВВ) при переходе ее в стабильное состояние: clip_image039 – свободная энергия активации; clip_image041 – движущая сила процесса перехода. Координатой реакции является любая переменная величина, служащая мерой развития реакции.

 

 


 

Детонация взрывчатых веществ

 

Служебной формой взрывчатых превращений промышленных ВВ является детонация, представляющая собой самоподдерживающий процесс перемещения по ВВ со сверхзвуковой скоростью ударного фронта (скачка давления), сопровождающийся химическим превращением вещества. Импульсом для начала развития химической реакции является, как правило, ударная волна, возбуждаемая взрывом капсюль-детонатора или электродетонатора, т.е. промежуточных детонаторов. Таким образом, химическая реакция возникает в результате адиабатического сжатия и разогрева вещества в ударном фронте. Комплекс из ударного фронта и зоны химической реакции называется детонационной волной.

В зависимость от типа ВВ, давление на ударном фронте может быть от десятков атмосфер (газовые взрывные смеси) до сотен тысяч (бризантные ВВ). В режиме стационарного распространения скорость фронта детонации может для разных ВВ составлять от 1 до 10 км/с. Тепло, выделяющееся при детонационной форме химического превращения, компенсирует потери энергии, идущие на сжатие и движение вещества, обеспечивая постоянство параметров детонационной волны. Следует подчеркнуть, что скорость детонации не зависит от начального импульса; она является характеристикой и постоянной величиной данного ВВ. Участок заряда от точки инициирования до начала распространения детонации со стационарной скоростью называют участком нестационарной детонации.

Теоретические основы детонации были заложены в конце ХIX столетия В.А. Михельсоном (Россия), Д.Л. Чепменом (Англия) и Е. Жуге (Франция). Математическая модель, созданная ими не учитывала кинетики химической реакции в детонационной волне, а представляла ударный фронт формально в виде поверхности разрыва, отделяющей исходное ВВ от продуктов взрыва.

Экзотермическая реакция, возбуждаемая механическим ударом, который передается от реагирующего слоя к соседнему слою, распространяется в виде волны давления. Такой процесс возможен лишь при том условии, что химическая реакция заканчивается прежде, чем спадет давление за счет волны разгрузки, идущей от свободной поверхности со скоростью звука. Такой сценарий возможен только при очень высоких давлениях, когда волны давления переходят в ударную волну. Таким образом, детонацию можно представить как сочетание ударной волны с зоной химической реакции.

Ударная волна возбуждает реакцию в веществе, а реакция усиливает ударную волну, пока не установится равновесие между передаваемой и рассеиваемой энергией не установится стационарный режим распространения волны детонации. Исследование процессов в такой установившейся волне в одномерном случае является задачей гидродинамической теории детонации. С учетом энерговыделения при детонации, основные соотношения между начальными и конечными параметрами состояния вещества, а также скоростью детонации и массовой скоростью движения продуктов химического превращения за фронтом находятся из законов сохранения массы, импульса и энергии в волне.

Независимо друг от друга Я.Б. Зельдович, Д. Нейман, В. Дёринг предложили модель детонационной волны, которая учитывает химическую зону превращения (зону "химпика") ВВ в конечные продукты. В соответствие с такой моделью, исходное ВВ с начальными параметрами p0, v0 (рис.4) сжимается в ударном фронте (точка В), разлагается и выходит из зоны реакции (точка С) со скоростью, уменьшенной на величину u, равную скорости газообразных продуктов взрыва. В случае одномерного потока законы сохранения массы и импульса записывают следующим образом:

clip_image043

где Р0 и Р – начальное давление и давление ПВ соответственно; r0=1/v0, r=1/v – соответственно начальная плотность ВВ и плотность ПВ.

Закон сохранения энергии записывается в форме:

clip_image045 (1.16)

где Е, Е0 - соответственно удельная внутренняя энергия в конечном и начальном состояниях. Выражение (1.16) является одной из форм записи уравнения ударной адиабаты Гюгонио для ПВ.

 

clip_image047

Рис.4 Схема фронта детонации: D – скорость распространения детонационной волны; u – скорость ПВ.

На P–v-диаграмме детонационной волны, рис.5, начальному состоянию соответствуют точка А, сжатию ВВ ударным фронтом – точка В. Экзотермическая реакция в ВВ, начавшаяся на ударном фронте (точка В), заканчивается на поверхности Чепмена–Жуге, рис.4, или в точке С, рис.5. Точка С называется точкой Жуге или Чепмена–Жуге; она лежит на адиабате продуктов взрыва (адиабате Гюгонио). Процесс превращения сопровождается расширением ПВ, поэтому давление ПВ падает: в точке Жуге давление РЖ почти вдвое ниже давАдиабатическому сжатию вещества отвечает прямая АВ, рис.6 с очень малым наклоном относительно оси абсцисс, что свидетельствует о крайне малом времени сжатия и малой толщине сжатого слоя. Зоне химика отвечает участок ВС на кривой спада давления. Точка С отвечает точке Жуге, участок за этой точкой характеризует спад давления в расширяющихся ПД.

Таким образом, вещество в детонационной волне последовательно проходит все состояния по пути АВС Зона сжатия в ударной волне очень мала (порядка 0,1 мкм), зона химической реакции зависит от химических и физических свойств ВВ и имеет ширину 0,5 мкм (для азида свинца) до 10 мм (для тротила и тетрила). Продолжительность времени химпика в высокоплотном флегматизированном гексогене составляет ~(2,5±5)·10–9 с при максимальном давлении в волне – 40 ГПа.

 

 


 

Детонационные волны

 

Несмотря на то, что описанная модель не во всех случаях соответствует наблюдаемым явлениям в структуре детонационных волн, общие зависимости вписываются в гидродинамическую теорию путем пространственно-временного усреднения параметров детонационной волны с неоднородным фронтом.

clip_image049

Рис.5 P–v-диаграмма детонационной волны.

 

Детонация по Чепмену–Жуге удовлетворяет условию (точка С):

D=U+C, (1.17)

где U – массовая скорость частиц ПД; C – скорость звука в ПД; D – скорость детонации, равная скорости перемещения зоны химической реакции. Другими словами, химическая реакция во взрывчатом веществе в форме детонации отвечает условию (1.17).

Если D>Dч.ж. давление может превысить Рж и тогда говорят о "пересжатой" детонации. При D<Dч.ж. волна называется "недосжатой". Невозможность существования самоподдерживающейся "пересжатой" детонационной волны следует из того, что в ней D–U<C, вследствие чего волна разрежения, следующая при детонации за скачком уплотнения, догонит фронт детонационной волны. Давление в нем будет уменьшаться и достигнет величины, соответствующей условиям Чепмена–Жуге. На графике зависимости Р от v (рис.5) величина D определяется как наклон прямой Михельсона, связывающей начальное состояние и состояние, соответствующее окончанию реакции. Таким образом, предполагается, что в условиях устойчивой детонации прямая Михельсона совпадает с касательной к кривой Гюгонио для продуктов взрыва.

 

clip_image051

Рис.6 Профиль детонационной волны в координатах давление–расстояние

 

Совместное решение уравнений (1.14) и (1.15) дает формулы для расчета кинематических параметров детонации:

clip_image053

Среди приближенных методов расчета параметров детонации мощных ВВ часто используется соотношение:

clip_image055 (1.18)

где Р – давление; k – показатель политропы – входит в уравнение состояния ПВ в виде политропы Pvk=const. Величина k может быть различной. Часто в расчетах принимается k=3. Шведов К.К. рекомендует при расчетах давления детонации пользоваться следующими значениями k:

- k = 3,25–3,3 – для тротила при clip_image057 = 1,59.1,63 г/см3;

- k = 2,7–3,0 – для гексогена и октогена.

Если в состав ВВ входят инертные добавки (например, NaCl или алюминий), то давление можно рассчитать по формуле:

clip_image059 (1.19)

где clip_image061 – весовая доля добавки в составе ВВ; clip_image063 – начальная плотность добавки, г/см3.

 

 

 


 

Принцип Ю.Б. Харитона

 

При выводе основных соотношений в детонационной волне рассматривалась одномерная задача для плоской волны. В этом случае вся потенциальная химическая энергия реализуется в детонационной волне и определяет параметры детонации – ее скорость, давление и т.д. В случае неодномерного течения за ударным фронтом параметры детонации в определенных границах становятся зависимыми от поперечных размеров заряда. Впервые это показано Ю.Б. Харитоном.

Поскольку зона химического превращения в детонационной волне имеет конечные размеры, то за время химической реакции, протекающей на участке ВС, рис.5, образующиеся сжатые газообразные продукты стремятся к расширению в радиальном направлении. В результате этого в зону реакции с боковой поверхности заряда ВВ входит волна разрежения, рис.9, а охваченная ею масса вещества теряется как поставщик энергии относительно ударного фронта.

Поскольку глубина проникновения волны разрежения обратно пропорциональна радиусу заряда, то относительные потери энергии в детонационной волне должны уменьшаться с увеличением радиуса заряда.

Принцип Харитона утверждает следующее: детонация может устойчиво распространяться по заряду, если продолжительность реакции в волне (clip_image065) меньше времени разброса вещества в радиальном направлении (clip_image067). Исходя из этого, можно найти такой минимальный диаметр заряда, при котором еще возможно устойчивое распространение детонации, т.е. найти критический диаметр заряда ВВ. Условия устойчивости определяют следующим образом. Продолжительность химической реакции в детонационной волне clip_image069 будет равна

clip_image071

или, учитывая, что U=D/4

clip_image073

будем иметь

clip_image075

Время разброса вещества в радиальном направлении составит

clip_image077

следовательно,

clip_image079

clip_image081

Рис.7 Зона химической реакции в детонационной волне:

d3 – диаметр заряда ВВ; clip_image083 – волна разрежения; clip_image083[1]=0,5·DВВ; b – глубина проникания волны разрежения; clip_image085 – ширина зоны реакции; D – скорость детонации ВВ.

 

С учетом выражения (1.20) и того, что clip_image087, формулу (1.21) можно переписать следующим образом

 

clip_image089 (1.22)

т.е. критический диаметр близок по величине к ширине зоны химической реакции. При d3>dкр потери энергии в детонационной волне должны уменьшаться, а параметры волны соответственно возрастать, асимптотически приближаясь к максимуму.

Детонацию с максимальными параметрами для данного ВВ и данной

плотности называют идеальной детонациейили детонацией в идеальном режиме. Диаметр заряда, при котором параметры детонации близки к максимальным (рис.8), т.е. к DИ, называют предельным диаметром(dпр).

clip_image091

Рис.8 Зависимость скорости детонации ВВ от диаметра заряда.

 

Детонацию, протекающую в зарядах с dкр<d3<dпр, называют неидеальной,или детонацией в неидеальном режиме. Связь между скоростью идеальной детонации, шириной зоны реакции и диаметром заряда выражается формулой, предложенной А. Дубновым:

clip_image093

Величина критического диаметра зависит от плотности ВВ, наличия оболочки и ее материала, внешнего давления, температуры и других параметров.

 

 

 

 


 

Оптический метод определения скорости детонации

 

Основными приборами, используемыми для оптических исследований, являются фоторегистраторы с зеркальной разверткой – СФР; оптическая принципиальная схема приведена на рис.9. С помощью СФР свечение, сопровождающее детонацию заряда ВВ, записывают на неподвижную фотопленку, на которую оно отбрасывается плоским вращающимся зеркалом. Количество фиксируемых на пленке кадров достигает 2-х млн. в секунду. Обычно заряд ВВ взрывают в бронекамере, имеющей щель, через которую и проникает свечение. Изображение на пленке получается уменьшенным по отношению к действительным размерам заряда.

Практическое использование СФР возможно в нескольких режимах:

- съемка с боковой поверхности заряда ВВ(в этом случае на фотопленке фиксируется временная развертка распространения зоны свечения – фронта ударной волны, детонационной волны или пламени при горении ВВ – по длине заряда. Данная постановка эксперимента позволяет регистрировать и переход ные процессы, т.к. изображение на пленке является аналогом t,x-диаграммы);

- съемка с торцевой поверхности заряда(данная постановка применима для регистрации скорости детонационной волны);

- покадровая съемка(в этом случае перед фотопленкой устанавливается линзовая вставка, позволяющая получать покадровое изображение процесса со скоростью до 2-х миллионов кадров в секунду; щелевая диафрагма при данной съемке отсутствует).

Типичная картина покадрового изображения развития высокоскоростного процесса показана на рис.10.

clip_image095

 

Рис.9 Принципиальная оптическая схема зеркальной развертки: 1 – заряд ВВ, расположенный перпендикулярно к плоскости чертежа; 2 – объектив; 3 – щелевая диафрагма; 4 – объектив; 5 – вращающееся зеркало; 6 – фотопленка; 7 – направление вращения зеркала; 8 – направление перемещения изображения.

clip_image097

Рис.10 Серия последовательных кадров светящихся продуктов взрыва заряда аммонита 6ЖВ: 1 – электродетонатор; 2 – заряд ВВ; 3 – картонное основание.

 

 


 

Метод ионизационных датчиков

 

Данный метод измерения скорости детонации основан на ионизации продуктов взрыва за фронтом детонационной волны. Как было установлено при детонации зарядов ВВ могут возникать высокие напряжения. Например, между двумя проводниками, идущими от электродетонатора №8, получены сигналы величиной 2 кВ. Более высокие значения (20 кВ) зафиксированы в зарядах, покрытых оболочкой из поваренной соли. Эти наблюдения послужили причиной исследований как ионизированного состояния в бризантных ВВ во время детонации, так и связи детонации с ионизацией. На основании многочисленных экспериментов было установлено, что высокая степень ионизации в зоне реакции детонационной волны является уникальной особенностью детонации конденсированных ВВ.

Электрическое сопротивление продуктов взрыва составляет от нескольких единиц до нескольких десятков Ом на миллиметр. Помещая в заряд ВВ на некотором расстоянии друг от друга искровые промежутки (ионизационные датчики), к которым приложено некоторое напряжение, можно во время детонации фиксировать возникающий в цепи электрический импульс. На рис.11 показана схема измерения скорости детонации с помощью ионизационных датчиков.

clip_image099

Рис.11 Постановка метода ионизационных датчиков:

1 – заряд ВВ; 2 – лепестки датчиков.

 

Ионизационные датчики помещаются в заряд ВВ, лепестки которых

включаются в цепь осциллографического измерителя времени. Таким образом с помощью осциллографа измеряется временной промежуток (t) прохождения детонационной волны участка L -- DВВ=L/t. Для данного метода DDВВ/DВВ»±0,5%.

Кроме метода ионизационных датчиков в экспериментальных исследованиях широко используются электромагнитный метод регистрации массовой скорости за фронтом ударных и детонационных волн, метод измерения скорости детонации с помощью реостатного датчика. В последние годы разработаны способы измерения скорости детонации с помощью световодов, основанные на передаче свечения детонационной волны к фотоприемникам. Методика измерения по своей сути близка к методу измерения электроконтактными датчиками. Отличается тем, что к регистрирующим приборам по световодам передается свечение детонационной волны.

 

 

 

 

 


 

Метод Дотриша

 

Для контроля качества ВВ на полигонах наиболее простым и доступным способом определения скорости детонации является хорошо испытанный метод Дотриша, рис.12. С боковой стороны заряда испытываемого ВВ длиной 300 мм (или другой длины) вводят отрезки детонирующего шнура (ДШ) длиной от 1,5 до 3-х метров. Расстояние между точками А и Б в зависимости от длины патрона должно быть 200 – 300 мм. Расстояние между точками и длину детонирующего шнура тщательно измеряют, при этом скорость детонации ДШ должна быть известна до проведения опыта. Свободный отрезок ДШ укладывают на металлическую пластину толщиной не менее 2–4 мм и длиной 300–400 мм. На середине пластины отмечают участок (точка О) между равными отрезками: АО=АБ+БО.

Электродетонатор устанавливают как показано на схеме рис.12. Во время взрыва заряда ВВ детонационная волна, дойдя до точки А, возбуждает детонационную волну в отрезке АО детонирующего шнура, которая пойдет по ДШ в сторону точки О. Продолжая движение по заряду ВВ, детонационная волна дойдет до точки Б и возбудит детонацию в отрезке БО детонирующего шнура. Таким образом, детонационные волны в отрезках АО и БО будут двигаться навстречу друг другу и в какой-то момент встретятся, например, в точке В. Если скорость детонации заряда ВВ будет меньше скорости детонации ДШ, то столкновение двух волн произойдет справа от точки О. Если же скорость детонации заряда ВВ окажется больше, чем детонирующего шнура, то столкновение двух волн произойдет слева от точки О. Результатом "лобового" столкновения детонационных волн, идущих по отрезкам ДШ, будет скачкообразное повышение давления и образование двух симметричных газовых струй, направленных перпендикулярно к оси ДШ. Высокое давление газов создаст характерное углубление на поверхности металлической пластины.

Время, в течение которого фронт детонации пройдет от точки А к точке В, будет равно

clip_image101

Время, затраченное фронтом детонации в заряде ВВ на прохождение участка от точки А к точке Б (расстояние b), определяем из выражения

clip_image103,

а время прохождения ДВ по шнуру от точки Б к точке В легко находят из выражения

clip_image105

Поскольку детонационные волны, распространяющиеся в отрезках (АО + а) и (БВ – а) детонирующего шнура, встречаются в точке В, то очевидно, что t1=t2+t3:

clip_image107

или

clip_image109

clip_image111

Рис.12 Схема определения скорости детонации по Дотришу:

1 – электродетонатор (или капсюль-детонатор); 2 – заряд ВВ; 3 – ДШ; 4 – металлическая пластина; DДШ – скорость детонации ДШ; DВВ – скорость фронта детонационной волны в заряде ВВ. Стрелками указано направление движения фронта детонационной волны в заряде ВВ и в детонирующем шнуре.

 

Используя начальное условие, при котором АО=b+БО, произведем замену в последнем уравнении и получим:

clip_image113

Окончательно будем иметь

clip_image115 (1.23).

Ошибка в измерениях, как показала многолетняя практика, не превышает 3-5%.

 

 

 


 

Передача детонации на расстояние

 

Передача детонации на расстояние характеризует способность взрыва заряда ВВ (активного заряда) вызывать детонацию другого заряда (пассивного заряда), установленного на некотором расстоянии от первого. Реакция взрывчатого превращения пассивного заряда ВВ объясняется резким сжатием первого его слоя и сильным разогревом ударной волной, возникшей при взрыве активного заряда. Дальность передачи возрастает с увеличением диаметра, плотности, массы и мощности активного заряда. Факторами, от которых зависит дальность передачи, являются свойства пассивного заряда, наличие оболочки, свойства материала оболочки, среды, разделяющей заряды, и др. Установлено, что из свойств активного заряда определяющими являются скорость детонации и плотность ВВ. На основе принципа передачи детонации на расстояние введено испытание чувствительности ВВ к восприятию детонации, рис.13. Это испытание заключается в определении максимального расстояния между двумя патронами диаметром 31–32 мм, при котором взрыв активного заряда вызывает безотказную детонацию пассивного заряда ВВ.

Для каждого промышленного ВВ установлены минимумы таких расстояний (х).

clip_image117

Рис.13 Схема испытания ВВ на передачу детонации.

 

На грунте укладывают два патрона на расстоянии, указанном в ТУ. Если при двух взрывах отказов не произошло, то ВВ считают выдержавшим испытания. Если произошел отказ, то количество испытаний увеличивают вдвое. При повторном отказе бракуется вся партия ВВ При испытаниях ВВ, поступивших в мешках, изготавливают патроны диаметром 31 ± 1 мм, длиной 200 ± 10 мм при плотности заряда ВВ 0,95-1,05 г/см3. Водоустойчивые ВВ испытывают после их выдержки в воде в течение 1 часа на глубине 1 м.

 

Термодинамика процессов горения и взрыва

 

Работоспособность взрывчатого вещества как источника энергии определяется теплотой взрыва (теплотой взрывчатого превращения). Часто в связи с этим о ВВ говорят как о своеобразной тепловой машине, которая, в конечном счете, превращает потенциальную энергию в механическую работу. В результате взрыва ВВ работу в окружающей среде совершают в процессе расширения нагретые и сжатые продукты взрыва (ПВ). Таким образом, одним из условий взрывчатого превращения является экзотермичность процесса. Тепло, выделяемое при взрыве, сильно влияет на сам характер взрыва, на температуру и давление ПВ, бризантность и работоспособность ВВ.

 

 

 

 


 

Тепловой эффект реакции взрыва. Закон Гесса

 

В инженерной практике определение теплового эффекта реакции взрывчатого превращения производят в соответствии с первым началом (законом) термодинамики и важнейшим законом термохимии - законом Гесса.

Согласно первому началу термодинамики вся теплота, сообщенная системе, расходуется на изменение внутренней энергии системы, а также на совершение работы системой:

Q=DU+А или dQ=dU+dА

где U – внутренняя энергия; А – работа.

Для случая изобарного процесса (при постоянстве давления Р=const) это уравнение, определяющее тепловой эффект реакции взрыва QP, примет вид:

dQP=dU+PdV=d(U+PV) или dQP=dН

где величина Н=U+PV называется энтальпией. Энтальпия является функцией состояния системы и определяется ее параметрами.

В случае изохорного процесса (при постоянстве объёма V=const) тепловой эффект реакции взрыва равен

dQv=dU или Qv=DU(298)=DН(298)-Sn·R·298

где Sn – сумма стехиометрических коэффициентов при газовых компонентах в уравнении реакции взрыва; R=8,31 Дж/(моль·К) – универсальная газовая постоянная.

Для реакций, протекающих в изотермических условиях (при постоянстве температуры Т=const), тепловой эффект вычисляют в соответствии с законом Гесса

DrH0298=[ånкон(DfH0298)кон-ånисх(DfH0298)исх]

где: DfН0298 – стандартные энтальпии образования исходных и конечных веществ (индекс f означает формирование, а r - реакцию), т.е. энтальпии реакции образования 1 моль этих веществ из простых веществ, взятые в форме, устойчивой при нормальных условиях (Р0=101,3 кПа; Т0=298К). Размерность их следующая: кДж/моль или ккал/моль (в более поздней литературе). Эти величины приводятся в справочниках физико-химических величин (см. приложение); n – стехиометрические коэффициенты в реакции.

В настоящее время помимо термодинамической системы знаков существует термохимическая система знаков теплоты и работы. Согласно последней тепловой эффект Q противоположен по знаку изменению энтальпий реакции DrH0298:

Q= -DrH0298, кДж/моль или Q= -DrH0298·n, кДж

где n – число молей вещества. Таким образом, если величина DrH0298<0, то реакция протекает с тепловыделением (+Q, -DH), и, наоборот, в случае, когда DrH0298>0, реакция протекает с теплопоглощением (-Q, +DH).

Как следует из закона Гесса, суммарный тепловой эффект некоторой последовательности химических реакций не зависит от пути превращения исходных веществ в конечные продукты, а определяется только начальным и конечным состоянием системы:

Qр=åQпв–Qвв, (1.24)

где Qр - теплота взрывчатого превращения; Qвв, åQпв - теплота образования

ВВ и сумма теплот образования продуктов взрыва соответственно.

В общем видеЗакон Гессаможно сформулировать следующим образом: тепловой эффект кругового процесса равен нулю.

При вычислении теплоты образования ВВ обычно рассматривают такие три составляющие системы, рис.14, как взрывчатое вещество (1), продукты взрыва (2) и свободные молекулы химических элементов (3).

clip_image119

Рис.14 Схематическое изображение закона Гесса.

 

При переходе (1)-->(2) выделится тепло, равное теплоте полного сгорания – Qвв. В случае перехода (2)-->(3) произойдет поглощение тепла, равное сумме теплот образования ПВ – åQпв. Так как переход (3)-->(1) соответствует процессу образования молекул ВВ, то теплота этого процесса равна теплоте взрывчатого превращения - Qр.

Таким образом, в качестве теплоты взрывчатого превращения(Qр=Qвзр) рассматривают количество тепла, выделяемое при взрывчатом превращении одного моля вещества.

Теплотой образования вещества(Qобр=-DfH0298) называют количество тепла, которое выделяется или поглощается при образовании одного моля вещества из молекул газов соответствующих элементов (Н2, О2, N2 и т.д.) и простых веществ (С, металл и т.д.). При этом реакции образования могут быть как реальными

clip_image121

так и виртуальными (пример - реакция образования тротила):

clip_image123

В общем виде виртуальная реакция образования ВВ брутто-формулы СaНbОcNd записывается следующим образом:

a·СТВ+(b/2)·Н2+(c/2)·О2+ (d/2)·N2 ---> СaНbОcNd+Qобр

Теплоту образования ВВ Qвв в прямом эксперименте определить невозможно. Величину Qвв рассчитывают с учетом экспериментально найденной стандартной теплоты сгорания данного вещества.

Стандартная теплота сгорания вещества - это количество тепла, выделяющееся при сгорании одного моля вещества в атмосфере избытка кислорода при условии, что углерод и водород образуют при этом высшие

оксиды (СО2, Н2О).

Для ВВ формулы СaНbОcNd реакция сгорания в избытке кислорода может быть представлена следующим образом:

СaНbОcNd+[a+(b/4)+(c/2)]O2 ---> aCO2 +(b/2)H2O(l)+(d/2)N2+Qсгор.

Для бризантных ВВ допустимы небольшие ошибки при оценке Qобр, так как окончательная приемка ВВ производится по натурным испытаниям зарядов: бризантность, разрушение преград, метательные действия, работоспособность и т.д.

          В таблице приложения П-1 приведены стандартные энтальпии образования DfН0298 некоторых индивидуальных ВВ, горючих, окислителей и продуктов некоторых реакций взрыва, а в таблицах П-2 и П-3 - контрольные задания.

 

 


 

Примеры расчета тепловых эффектов реакций взрывчатых превращений

 

Пример 1. Рассчитать тепловой эффект реакции взрывчатого превращения 320 г дымного пороха следующего состава: 75% KNO3, 15% С и 10% S.

Решение. Реакция горения дымного пороха, состоящего из указанных компонентов, имеет вид:

2,38KNO3(s)+4C(s)+S(s)=1,19K2O(s)+SO2(g)+3,95CO(g)+0,05C(s)+1,19N2(g), где 2,38=clip_image125; 4=clip_image127;

1=clip_image129 (М – мольные массы, г/моль; m – массы в соответствии с процентным содержанием, г; 320 г – общая масса ВВ).

Дальнейший расчет удобнее производить при помощи таблицы.

 

Вещество

KNO3(s)

C(s)

S(s)

K2O(s)

SO2(g)

CO(g)

C(s)

N2(g)

DfН0298,       кДж/моль

-492,5

0

   0

-361,5

-296,9

-110,5

0

0

 

Исходные вещества

Конечные вещества (продукты)

n

2,38

4

1

1,19

1

3,95

0,05

1,19

 

 

 

 

 

 

 

 

 

Примечание: индексы (s) и (g)  у веществ обозначают их агрегатное состояние (твердое и газообразное). Следует учитывать, что величины DfН0298 для простых веществ равны нулю (например, для С, S и N2 в данном примере).

 

Найдём по закону Гесса тепловой эффект реакции для 1 моль ВВ:

DrH0298=ånкон(DfH0298)кон-ånисх(DfH0298)исх=[-361,5·1,19+(-296,9·1)+

+(-110,5·3,95)+0·0,05+0·1,19]-[(-492,5·2,38)+0·4+0·1]=8,59 кДж/моль.

Для расчета теплового эффекта рассматриваемой реакции горения 320г дымного пороха необходимо определить количество моль вещества, содержащееся в указанной массе. Для этого выведем брутто-формулу (или условную формулу) данного ВВ (2,38KNO3(s)+4C(s)+S(s)):

Брутто-формула имеет следующий вид: CaSbNcOdКе, где а, b, c, d и е – количества углерода (С), серы (S), азота (N), кислорода (О) и калия (К), соответственно.

а=4·1=4; b=2,38·1=2,38; c=2,38·1=2,38; d=2,38·3=7,14 и е=2,38·1=2,38. Таким образом, получим: C4S2,38N2,38O7,14К2,38. Следовательно, в 320 г ВВ состава C4S2,38N2,38O7,14К2,38 содержится следующее количество моль вещества

n=clip_image131, где МВВ=12·4+32·2,38+14·2,38+

+16·7,14+39·2,38=365 г/моль – мольная масса указанного ВВ; mВВ=320 г – масса данного ВВ (см. условие).

Тогда Q= -clip_image133·n= -8,59 кДж/моль·0,877 моль= -7,53 кДж.

 

Пример 2. Рассчитать тепловой эффект реакции взрывчатого превращения 1 кг нитроглицерина:

С3Н5(ONO2)3(l)®3CO2+2,5H2O+1,5N2+0,25O2.

 

Решение. Расчет произведём при помощи таблицы:

 

Вещество

С3Н5(ONO2)3(l)

CO2

H2O

N2

O2

DfН0298,       кДж/моль

-364,8

-393,5

-241,8

0

0

 

Исходные вещества

Конечные вещества (продукты)

n

1

3

2,5

1,5

0,25

Примечание: индекс (l) у вещества обозначает агрегатное состояние (жидкое).

 

Согласно закону Гесса найдём тепловой эффект реакции для 1 моль ВВ:

DrH0298=ånкон(DfH0298)кон-ånисх(DfH0298)исх=[-393,5·3+(-241,8·2,5)+

+0·1,5+0·0,25]-[(-364,8·1)]=-1420,2 кДж/моль.

 

В 1 кг ВВ состава С3Н5(ONO2)3 содержится следующее количество моль вещества

n=clip_image135, где МВВ=227 г/моль – мольная масса указанного ВВ; mВВ=103 г – масса данного ВВ (см. условие).

Тогда Q= -clip_image137·n=1420,2 кДж/моль·4,41моль=6263,1 кДж.

 

Пример 3. Рассчитать стандартную энтальпию образования ацетиленида серебра DfH0298(Ag2C2) по реакции Ag2C2=2Ag+2C, если тепловой эффект данной реакции составляет Q=364,53 кДж/моль.

Решение. Обозначим стандартную энтальпию образования ацетиленида серебра через х (искомая величина). Расчет произведём при помощи таблицы:

 

Вещество

Ag2C2

Ag

C

DfН0298,       кДж/моль

х

0

0

 

Исходные вещества

Конечные вещества (продукты)

n

1

2

2

 

Тогда можно составить уравнение:

DrH0298=ånкон(DfH0298)кон-ånисх(DfH0298)исх=(0·2+0·2)-(х·1)

По условию задано, что Q=364,53 кДж/моль, т.е. DrH0298=-Q=-364,53 кДж/моль и уравнение примет вид:

(0·2+0·2)-(х·1)=-364.53, откуда х=DfH0298(Ag2C2)=364,53 кДж/моль.

 

 


 

Кислородный баланс ВВ

 

С химической точки зрения взрыв – это необратимая химическая реакция превращения исходного ВВ в газообразные продукты. Направление реакции и состав конечных продуктов определяют основные параметры взрыва: теплоту, температуру, давление и др. Входящие в состав продуктов взрыва (ПВ) окислы азота и окись углерода, как известно, обладают высокой токсичностью. Они становятся особенно опасными в подземных выработках, когда их количество превышает допустимые пределы. Борьба с ядовитыми газами в горных выработках ведется в течение многих десятков лет, а в настоящее время в связи с расширением ассортимента применяемых ВВ и развитием горных работ становится весьма важной и актуальной. Неизбежные ограничения, например, по условиям вентиляции в подземных выработках обязывают вводить определенные нормы для ВВ в отношении количества образуемых при взрыве ядовитых газов.

Идеальными компонентами взрывчатого превращения являются наиболее термодинамически устойчивые соединения. Однако в случаях промышленного использования ВВ наблюдаются отклонения от идеального состава ПВ по нескольким причинам. Например, на состав ПВ с отрицательным кислородным балансом сильное влияние оказывает плотность заряда ВВ, скорость закалки ПВ (скорость теплообмена с окружающей средой), условия разлета ПВ, т.е. время протекания реакции в зоне химического пика и особенности характера взаимодействия между компонентами ПВ, а также химический состав и концентрация добавок. Кроме этого, свойства горных пород при ведении взрывных работ оказывают весьма заметное влияние на образование, состав и концентрацию ядовитых газов. Причиной отклонения от идеального состава ПВ является каталитическое действие горных пород – при взрыве одного ВВ в различных горных породах, были обнаружены значительные отклонения количественного состава ядовитых газов. Другими словами, горные породы вступают в химическое взаимодействие с ПВ, оказывая каталитическое действие на сценарии вторичных реакций в самих ПВ.

Эксперименты исследования современного периода свидетельствуют о том, что влияние породы, окружающей заряд ВВ, значительно сильнее, чем влияние состава ВВ на количество ядовитых газов в ПВ. Колебания суммарного количества ядовитых газов при взрыве различных ВВ в одной горной породе достигали 200%, а при взрыве одного ВВ в различных породах – до 1000%.

При взрывании зарядов ВВ в горном массиве возникают радиальные и тангенциальные трещины, механизм образования которых подробно описан в литературе. ПВ под действием высокого давления проникают не только в свежеобразованные трещины, но и в трещины естественного происхождения, вызывая их развитие. Процесс разрушения, при котором происходит образование трещин, сопровождается разделением разноименных электрических зарядов на свежеобразованных поверхностях, при этом, в области разрыва возникают электрические поля высокой напряженности, что приводит к резко неравновесному состоянию поверхности, высокой поверхностной проводимости и химической активности. На стойкость молекул и ход химических реакций в целом оказывает решающее влияние плотность поверхностных зарядов. Под действием давления газов вероятность соударения молекул ПВ с поверхностными зарядами трещины резко возрастает, т. е. существует большая вероятность их сближения на расстояния, сравнимые с межъядерными расстояниями в молекуле. В результате этого возможна диссоциация исходных молекул и образование новых, в том числе и таких токсичных, как окислы азота, углерода и др.

Для оценки энергетических параметров ВВ необходимо находить соотношение между горючими компонентами и окислителем в молекуле. Это соотношение характеризуется величиной кислородного баланса – КБ, выраженного в процентах.

Кислородным балансом называется выраженное в процентах отношение массы свободного кислорода, остающегося после окисления всего углерода, содержащегося в ВВ, в углекислый газ СО2, всего водорода в H2O, всех металлов в высшие оксиды к массе взятого ВВ. Азот при этом должен оставаться свободным в виде N2.

Таким образом, из определения следует, что КБ может быть положительным, отрицательным и нулевым.

Положительный КБ - наличие кислорода в составе ВВ превышает количество, необходимое для окисления горючих элементов (при взрывчатом превращении ВВ образуются ядовитые окислы азота, вследствие чего такие ВВ не допускаются для взрывных работ над землей). Вещества с положительным КБ (селитра, нитроглицерин), т.е. окислители, для увеличения мощности ВВ необходимо смешивать с соединениями, имеющими отрицательный кислородный баланс, или с горючими, в которых не содержится кислорода.

Нулевой КБ – в составе ВВ кислород содержится в количестве, необходимом для полного окисления всех горючих элементов.

Отрицательный КБ – наличие кислорода недостаточно для окисления всех горючих элементов и компонентов в продуктах взрывчатого превращения.

При отрицательном кислородном балансе в результате взрыва могут образоваться ядовитые газы (СО), сажа (С), а при положительном - ядовитые оксиды азота. Поэтому в промышленности стремятся использовать ВВ такого состава, чтобы их кислородный баланс приближался к нулю. Кислород ВВ в этом случае расходуется таким образом, что в первую очередь он идёт на окисление металлов, водорода, серы в диоксид, углерода первостепенно в оксид, далее в диоксид.

По составу ВВ делятся на индивидуальные химические вещества и механические смеси компонентов, которые вступают между собой в реакцию.

Кислородный баланс индивидуальных взрывчатых веществ можно вычислить по их химическим формулам. Если индивидуальное ВВ содержит атомы кислорода, водорода и азота и его химический состав описывается формулой CaHbNcOd, то его кислородный баланс вычисляется по формуле:

clip_image139,

где 2a - число атомов кислорода в СО2 , b/2 - число атомов кислорода в H2O, а знаменатель - это масса моля ВВ, г/моль.

Для смесевых ВВ вычисление КБ производится, исходя из процентного содержания компонентов смеси и по ее условной химической формуле, или по величине кислородного баланса каждого компонента, приводимого в справочниках.

В том случае, если помимо атомов водорода, кислорода, углерода и азота в состав ВВ входит алюминий и его химический состав выражается условной формулой CaHbNcOdAll , кислородный баланс ВВ вычисляют по формуле:

clip_image141,

в которой 3/2 l - число атомов кислорода в Al2O3.

Кислородный баланс смесевых ВВ на практике чаще вычисляют, относя к одному килограмму смеси. В этом случае расчетная формула имеет вид:

clip_image143.

 

          В инженерной практике применяют также следующие расчетные формулы при определении КБ. Так для индивидуальных ВВ можно использовать следующее выражение:

clip_image145

где АГ– грамм-атомный вес излишка или недостатка кислорода в составе ВВ; М – грамм-молекулярный вес данного ВВ; 16 – грамм-атомный вес кислорода; КГ– необходимое число атомов кислорода для полного окисления атомов углерода в СО2 и атомов водорода в воду; KB – число атомов кислорода в составе взрывчатого вещества; АГ=(КВКГ)·16.

KГ =2·Сn+0,5·Hm.

 

Нулевому КБ соответствует кислородный коэффициент aК, равный 1:

aК=d/(2a+0,5b)=1.

Относительно 1 кг смеси ВВ расчет КБ можно производить по формуле:

clip_image147

Если в смеси ВВ содержится алюминий, то уравнения для КБ и aК будут иметь следующий вид:

clip_image149

где е – количество грамм-атомов алюминия.

          В таблице П-4 приложения приведены значения КБ некоторых ВВ и их компонентов.

 

 


 

Примеры определения КБ ВВ

 

 

Пример 1. Вычислить кислородный баланс нитроглицерина C3H5(ONO2)3.

Решение. В молекуле нитроглицерина число атомов: кислорода d = 9, углерода a = 3, азота c = 3 и водорода b = 5. Подставляя эти данные, получим:      

clip_image150= clip_image152.

Нитроглицерин имеет слегка положительный кислородный баланс.

 

Пример 2. Вычислить кислородный баланс тринитротолуола (тротила) C7H5(NO2)3 .

Решение. В молекуле тринитротолуола число атомов: кислорода d = 6, углерода a = 7, азота c = 3 и водорода b = 5. Подставляя эти данные, получим:      

clip_image153= clip_image155.

Как следует из этого расчета, тринитротолуол имеет резко отрицательный кислородный баланс.

 

Пример 3. Вычислить кислородный баланс нитрата аммония (аммиачной селитры) NH4NO3.

Решение. В молекуле NH4NO3 число атомов: кислорода d = 3, углерода a = 0, азота c = 2 и водорода b = 4. В итоге получим:      

clip_image156= clip_image158.

Положительный КБ.

 

Пример 4. Вычислить кислородный баланс аммонала, смесевого ВВ, состоящего из аммиачной селитры (80% по массе), тротила C7H5(NO2)3 (15%) и алюминия (5%). Расчет выполнить, исходя из массы ВВ, равной 1 кг.

Решение. Первый способ – по условной химической формуле смеси.

В 1000 г ВВ заданного состава содержится 800 г NH4NO3 (масса одного моля М = 80), 150 г тротила (М = 227) и 50 г алюминия. Число молей этих компонентов в 1 кг их смеси заданного состава составляет: nNH4NO3 =clip_image160, nC7H5(NO2)3 = clip_image162, nAl = clip_image164= 1,85 или  в ней содержится 10NH4NO3 + 0,66 C7H5(NO2)3 + 1,85Al. Для вывода условной химической формулы, которая должна иметь общий вид CaHbNcOdAll , вычисляем число молей: атомов углерода a = 0,66×7 = 4,62; атомов водорода b = 10×4 + 0,66×5 = 43,3; атомов азота с = 10×2 + 0,66×3 = 21,98; атомов кислорода d = 10×3 + 0,66×6 = 33,96; атомов алюминия  l = 1,85. Условная химическая формула ВВ, таким образом, имеет вид:

C4,62 H43,3N21,28O33,96Al1,85 ,

а кислородный баланс ВВ равен

clip_image143[1]= =clip_image166= + 0,47% .

Второй способ решения этой задачи – по величине кислородного баланса (приложение) и доле по массе (wi) каждого компонента смесевого ВВ. Формула для расчета кислородного баланса в этом случае имеет вид: 

КБ = S(КБi×wI)

Кислородный баланс NH4NO3 равен +20% (см. пример 3), для тротила КБ = – 74% (пример 2), для алюминия КБ = -clip_image168=-88,9%. Для смеси заданного состава КБ = 0,8×20 + 0,15×(-74) + 0,05×(-88,9) = + 0,46%.

 

Пример 5. Какое количество тротила (КБ = -74%) следует добавить к 1 кг нитрата аммония (КБ = +20%), чтобы кислородный баланс этой смеси был равен нулю?

Решение. Обозначив искомую массу тротила за x, получим

КБ = S(КБi×wI) = clip_image170, откуда x = clip_image172= 270,3 г.

 

 


 

Чувствительность ВВ к внешним воздействиям

 

Взрывчатые свойства ВВ определяют лишь потенциальную возможность их взрывчатого превращения. Для реализации этой возможности необходимо произвести на ВВ такое воздействие, которое было бы способно вызвать в нем взрывчатое превращение, т.е. воздействие, которое называют инициирующим импульсом. Способность ВВ реагировать на внешние воздействия путем химического превращения в форме детонации (взрыва) - это чувствительность ВВ к внешним воздействиям.Чувствительность ВВ является важнейшим параметром, определяющим не только принципиальную возможность практического применения ВВ, но и области применения.

Начальными импульсами могут быть различные виды воздействий. Любое внешнее воздействие по физической сути является энергетическим. ВВ об-

ладает избирательной чувствительностью к различным видам начальных импульсов. Так, одни ВВ более чувствительны к механическим воздействиям (трение, накол и т.п.), другие – к тепловым (открытый огонь, контактный нагрев), третьи – к энергии лазерного излучения, рентгеновского или инфракрасного. Чувствительность к внешним воздействиям классифицируют по видам начального импульса, рассматривая отдельно чувствительность к удару, лучу огня, ударной волне и др.

Основными видами начальных импульсов являются следующие формы энергии: тепловая, механическая, электрическая, энергия электромагнитного излучения, ударно-волновое воздействие, детонационный импульс, ультразвуковые волны и т.д.

Поскольку наиболее распространенным видом случайного воздействия является механическое (удар, трение, накол), то чувствительность ВВ к этому виду воздействия исследуется в первую очередь для оценки уровня их опасности, а также для оценки безотказности срабатывания ВВ. Основными экспериментальными методами оценки чувствительности ВВ к механическим воздействиям являются: определение чувствительности к трению ударного характера (метод Боудена–Козлова), к трению при истирании, к удару (копер Велера, копер К-44-1, копер К-44-II, роликовые приборы №1 и №2), метод критических напряжений (измеряются напряжения, развивающиеся в ВВ при ударе в момент возбуждения взрывного процесса).

В процессе производства, переработки, снаряжения и применения ВВ распространенным видом внешнего воздействия является тепловое – контактный нагрев, действие открытого огня. Взрывчатое вещество при нагревании термически разлагается с выделением тепла. Если скорость отвода тепла в системе будет меньше скорости поступления в нее тепла, то реакция может сопровождаться возникновением вспышки. Температура, при которой химическая реакция принимает характер взрывчатого превращения - это температура вспышки.

Одним из вариантов испытания ВВ на чувствительность к тепловому воздействию является метод ЛТИ, разработанный в Санкт-Петербургском технологическом университете. По этому методу температуру вспышки определяют при 5-ти секундной задержке воспламенения ВВ. Используются следующие навески ВВ: для ИВВ – 0,02 г, для БВВ – от 0,05 до 0,1 г.

Чувствительность ВВ к электрическому импульсу является важнейшей характеристикой, поскольку большинство взрывчатых веществ диэлектрики и обладают способностью к электризации. Главная опасность состоит в том, что накопленный статический заряд на стенках оборудования или ВВ может превысить электрическую прочность окружающей среды, а электрический разряд при этом может вызвать воспламенение или детонацию ВВ.

Искровой разряд может возникнуть от блуждающих токов, статической электризации и других причин. В момент пробоя в разрядном промежутке образуется тонкий токопроводящий канал холодной плазмы с плотностью тока 104–105 А/см2. За время 0,1–1,0 мкс воздух нагревается до температуры 10000К, что является причиной образования ударной волны. Если ВВ (в виде пыли или порошка) оказывается по каким-либо причинам в разрядном промежутке, то оно может воспламениться или детонировать.

В соответствие с правилами безопасности и охраны труда предусмотрены

следующие основные меры защиты от электризации:

- непрерывный отвод образующихся зарядов путем заземления оборудования;

- принятие мер для повышения объемной и поверхностной проводимости (увлажнение поверхности частиц, поддержание в помещении относительной влажности свыше 65%, введение антистатических добавок, электропроводящих добавок (металлов, графита и т.п.);

- обслуживающий персонал должен быть в электропроводной одежде и обуви (человек, изолированный от земли, может накопить на себе заряд до 15000 В);

- в наиболее опасных с точки зрения электризации узлах устанавливаются приборы, непрерывно фиксирующие фактический уровень электризации.

С целью создания надежных, безотказно действующих средств инициирования (капсюлей детонаторов – КД, электродетонаторов – ЭД) проводятся исследования чувствительности бризантных ВВ к детонационному импульсу.

Чувствительность БВВ к взрывному импульсу инициирующих ВВ определяется для обеспечения безотказного действия КД и ЭД и характеризуется величиной минимального инициирующего заряда ИВВ. В табл.1 приведены значения МИЗ штатных ИВВ.

 

Таблица 1

Минимальный инициирующий заряд штатных ИВВ для некоторых БВВ (вторичных инициирующих ВВ)

 

Бризантное взрывчатое

вещество

МИЗ инициирующих ВВ, г

азид свинца

гремучая ртуть

Тротил

0,1

0,36

Тетрил

0,023

0,3

Гексоген

0,02

0,19

ТЭН

0,01

0,17

 

 


 

Относительная оценка полезной работы взрыва

 

Работоспособность ВВ

 

Для определения относительной работоспособности ВВ наиболее широко применяется метод свинцовой бомбы(проба Трауцля), принятый на Втором Международном конгрессе прикладной химии. Бомба Трауцля представляет собой свинцовый цилиндр диаметром и высотой 200 мм, в которой имеется цилиндрическое несквозное отверстие диаметром 25 мм и глубиной 125 мм, (см. рис.15). Бомбу отливают из рафинированного свинца при температуре 390–400°С. На дно отверстия помещают заряд ВВ весом 10 г в бумажной гильзе. На заряд ВВ устанавливают электродетонатор ЭД-8-Э, а свободную часть канала бомбы засыпают сухим кварцевым песком. Испытания проводят при температуре +10 °С. При изменении температуры производят соответствующие поправки: при 0 °С полученную величину расширения увеличивают на 5%, при +30 °С – уменьшают на 6%. В бомбе в районе размещения заряда при взрыве образуется полость (см. рис.15, в). Расширение канала бомбы происходит за счет действия давления продуктов взрыва электродетонатора и испытуемого ВВ. Мерой относительной работоспособности ВВ (в см3) является величина расширевшегося объема канала свинцовой бомбы за вычетом начального объема (61 см3) и расширения (30 см3) за счет взрыва электродетонатора.

Принципиальные недостатки этого способа состоят в следующем. По величине расширения канала нельзя количественно сравнивать ВВ, а можно лишь расположить их в некоторой последовательности, т.е. в некоторый относительный ряд, поскольку величина расширения объема связана с истинной работоспособностью ВВ нелинейной зависимостью.

А.Ф. Беляевым предложен метод эквивалентных зарядов, заключающийся в определении эквивалентной массы аммонита 6ЖВ, производящей такое же действие, как исследуемый заряд ВВ. Обязательным условием метода является использование зарядов равного объема. При соблюдении данного условия одинаковым расширениям должна соответствовать одинаковая работа.

Помимо метода свинцовой бомбына практике получили широкое применение:

- метод баллистического маятника;

- метод баллистической мортиры;

- оценка работоспособности по воронке выброса.

С методикой проведения исследований и оценки работоспособности перечисленных способов можно познакомиться в специальной литературе.

 

clip_image174

Рис.15. Определение работоспособности в свинцовой бомбе:

1 – свинцовая бомба; 2 – канал; 3 – сухой кварцевый песок; 4 – электродетонатор; 5 – испытуемое ВВ; 6 – полость, образовавшаяся в бомбе при взрыве ВВ и ЭД.

 

 


 

Бризантность ВВ

 

Бризантность или дробящее действие взрыва определяют простым и широко распространенным методом, используя стандартную пробу на обжатие свинцовых столбиков или пробу Гесса, рис.16, которая используется в качестве контрольной приемочной пробы.

Мерой бризантности ВВ (Б) является величина обжатия или, другими словами, разность высот столбика до обжатия (60 мм) и после обжатия (НВ, мм): Б=60–НВ, мм.

Для промышленных ВВ величина обжатия столбика зависит от скорости детонации ВВ, которая возрастает с измельчением компонентов, увеличением гомогенности их смешивания.

Помимо пробы Гесса на практике используют методы испытаний бризантности ВВ с использованием баллистического маятника (экспериментальное значение импульса рассчитывается по измеренному отклонению маятника).

Бризантность промышленных ВВ исследуют путем дробления кубиков горной породы (после взрыва разрушенная горная порода подвергается ситовому анализу – определяют выход зерен размером 5– 7 мм).

 

clip_image176

Рис.16. Схема к определению бризантности по пробе Гесса (а):

1 – огнепроводный шнур; 2 – капсюль детонатор; 3 – заряд испытуемого ВВ (50 г); 4 – бумажная оболочка; 5 – стальная пластина; 6 – свинцовый столбик; 7 – металлическая плита; (б) – свинцовый столбик после обжатия.

 

 

 

 


 

Классификация промышленных взрывчатых веществ

 

Начиная с XIX-XX веков (появление первых бризантных взрывчатых веществ (далее ВВ)) в химической промышленности началась разработка и производство широкого сортамента различных взрывчатых веществ. Далеко не все из них получили промышленное применение, некоторые рассматриваются только с теоретических позиций, а некоторые из-за высокой токсичности и других недостатков выведены в настоящее время из эксплуатации. Существует целый ряд ВВ, которые применяются только в военном деле. Многие ВВ широко используются в горном деле, в строительстве, машиностроении и других отраслях промышленности. Наибольшее количество промышленных ВВ (около 90%) используется в горном деле при добыче полезных ископаемых. Поэтому, не смотря на то, что взрыв освоил десятки профессий, в первую очередь, он является неотъемлемым атрибутом профессии горного профиля.

Все промышленные ВВ можно разделить на два основных класса:

а) взрывчатые химические соединения;

б) взрывчатые смеси.

Взрывчатые химические соединения - это относительно неустойчивые химические системы, способные под влиянием внешних воздействий к быстрым экзотермическим превращениям (реакции с выделением тепла), в результате которых происходит разрыв химических связей как между молекулами, так и между атомами в молекулах и последующая рекомбинация свободных атомов или ионов в термодинамически устойчивые новые соединения (молекулы газа, твердые ультрадисперсные углеродсодержащие частицы - алмаз, графит и др.). В этой группе большинство ВВ представляют собой кислородсодержащие органические соединения, способные к частичному или полному внутримолекулярному горению. Неустойчивость взрывчатых химических соединений, согласно Вант-Гоффу, обуславливается присутствием в их молекулах метастабильных атомных комплексов, например, групп С≡С в производных ацетилена, N=N в азидах, N=C в солях гремучей кислоты, N=О в нитросоединениях, С–О в перекисях и озонидах, О–Cl в хлоратах и перхлоратах и др.

Указанные группы придают соответствующим ВВ и соединениям

взрывчатые свойства за счёт того, что некоторые из них (N=О, С–О и О–Cl) содержат несвязанный с горючим свободный кислород, который вступает в химическую реакцию с горючими компонентами со значительным выделением теплоты. Другие группы с неустойчивыми химическими связями (С≡С, N=N, N=C) дастаточно легко распадаются. Взрывчатые вещества этой группы называют еще индивидуальными. К ним относятся: азид серебра, азид свинца, гексоген, гремучая ртуть, дина, нитроглицерин, нитроксилин, нирогликоль, октоген, тротил, тенерес, тетрил, тэн и др.

Взрывчатые смеси- это такие системы, которые состоят, минимум, из двух компонентов, не связанных химически между собой. Один из компонентов, как правило, является веществом, богатым кислородом, а второй - состоит преимущественно из горючих элементов, при этом не содержит кислород, либо содержит, но в количестве недостаточном для полного внутримолекулярного окисления. Такие смеси представляют собой газообразные, жидкие, твердые или гетерогенные системы. Примеры: газообразные системы - смесь метана с воздухом (рудничный газ); жидкие - смесь горючих компонентов (бензол, толуол) с окислителями (азотная кислота, тетранитрометан); твёрдые - смесь основного компонента (например, аммиачной селитры) с горючими (тротил, динитробензол и др.) - к таким системам относятся пороха; гетерогенные системы (2-х и более фазные) - смесь аммиачной селитры с нефтяным маслом, дизельным топливом, аэрозоли, пылегазовая смесь и т.п.

К современным промышленным ВВ предъявляется ряд требований, среди которых главными являются:

-    достаточная мощность, которая обеспечивает необходимую механическую работу;

-    простота и безопасность при изготовлении;

-    удобство и безопасность в обращении;

-    постоянство свойств при длительном хранении и применении;

-    безотказность действия при достаточном инициирующем импульсе;

-    технически и экономически доступные в изготовлении.

Для применения в условиях подземной добычи полезных ископаемых к отдельным группам ВВ предъявляются следующие дополнительные требования:

-    образование минимального количества ядовитых газов;

-    безопасность применения в шахтах, опасных по взрыву газа или пыли.

По способу возбуждения взрывчатого превращения взрывчатые вещества и взрывчатые системы условно разделяют на:

- первичные инициирующие;

- вторичные инициирующие.

В соответствии с областями применения ВВ делят на:

- инициирующие (ИВВ);

- бризантные или дробящие (БВВ);

- метательные (пороха и ракетные топлива);

- пиротехнические составы.

 

 

 

 


 

Инициирующие взрывчатые вещества

 

Инициирующие ВВ применяются в качестве возбуждения детонации в зарядах БВВ. Отличительные свойства ИВВ от других бризантных ВВ состоят в их способности детонировать под влиянием незначительных тепловых (луч огня) или механических (удар, трение, накол) внешних воздействий, т.е. обладают чрезвычайно высокой чувствительностью к механическим воздействиям. Вещества этой группы характеризуются весьма малым временем роста скорости взрывчатого превращения от начала возбуждения до стационарной детонации. У азида свинца, например, период ускорения процесса практически отсутствует, т.е. процесс независимо от размеров заряда сразу же протекает в форме детонации.

Инициирующие взрывчатые вещества (далее ИВВ) преимущественно используют в средствах инициирования – капсюлях-детонаторах (КД), электродетонаторах (ЭД). К этой группе относят:

1. Cоли тяжелых металлов гремучей кислоты (фульминаты): гремучая ртуть – Hg(ONC)2, гремучее серебро – AgONC.

2. Cоли азотистоводородной кислоты (азиды): азид свинца – Pb(N3)2, азид серебра – AgN3.

Некоторые органические азиды: циануртриазид – C3N3(N3)3.

3. Соли тяжелых металлов стифниновой кислоты: тринитрорезорцинат свинца (ТНРС).

4. Карбиды тяжелых металлов (ацетилениды): ацетиленид серебра.

5. Галоидные соединения азота.

6. Некоторые нитроароматические диазосоединения.

Эти вещества называют первичными инициирующимиили первичными ВВ.

В последнее время разработаны и получены инициирующие ВВ нового класса, основным свойством которых является очень высокая чувствительность к химическому превращению в детонационной форме при воздействии лазерного излучения определенной длины волны. По сравнению с азидом свинца чувствительность некоторых новых ИВВ выше почти в 100 раз. Однако чувствительность к тепловым и механическим воздействиям практически соответствует аналогичным характеристикам тэна. Некоторые из них взрываются только при действии лазерного луча. Такие взрывчатые вещества могут быть использованы как первичные в оптических детонаторах (ОД), либо как обычные бризантные ВВ при проведении специальных взрывных работ; в табл.2 представлены некоторые ВВ этого класса.

Таблица 2

Светочувствительные взрывчатые вещества

 

 

ВВ

Плотность, г/см3

Скорость

детонации, км/с

Чувствительность к удару (нижний порог), мм

Температура вспышки, С

Энергия зажигания лазерным моноимпульсном,

Дж/см2

BC-2

3,0

6,5

50

185

2,3×10-3

BC-7

4,6

6,2

60/100

350

5×10-3

BC-16

1,1

5,1

-

139

12×10-3

 

 


 

Бризантные взрывчатые вещества

 

В бризантных ВВ (далее БВВ) детонация может быть вызвана влиянием относительно больших внешних воздействий, обычно при помощи ИВВ. Основным видом их взрывчатого превращения также является детонация. У бризантных ВВ взрывчатые характеристики значительно выше чем у инициирующих ВВ. Эту группу представляют следующие ВВ:

1. О-нитросоединения: нитроглицерин – тринитрат глицерина, ТЭН – Тетранитрат пентаэритрита, нитрат целлюлозы.

2. С-нитросоединения: тетрил (тринитротолуол), пикриновая кислота (тринитрофенол); тетранитрометан – С-(NО2)4.

3. N-нитросоединения: тетрил (тринитрофенилметилнитрамин), гексоген (циклотриметилентринитрамин), октоген (циклотетраметилентетранитрамин).

4. БВВ – механические смеси: аммониты (смеси на основе аммиачной селитры), динамиты (смеси на основе нитроглицерина), сплавы тротил-гексоген (ТГ) и др., пластичные и эластичные ВВ на основе мощных БВВ.

В табл.3 представлены некоторые свойства БВВ. Тэн, гексоген, тетрил используют как вторичные инициирующие ВВ в средствах инициирования основных зарядов ВВ – в детонирующих шнурах (ДШ), в капсюлях-детонаторах (КД) или электродетонаторах (ЭД).

Таблица 3

Свойства штатных бризантных взрывчатых веществ

Показатели

Тротил

Тетрил

Гексоген

Октоген

ТЭН

Температура плавления, °C

80,6-80,9

129,45

204-205

281-284

139-141,3

Плотность монокристаллов, г/см3

1,663

1,730

1,806

1,904

1,770

Удельная теплота взрыва, ккал/кг (кДж/кг)

1010

(4228)

1150

(4815)

1290

(5392)

1354

(5668)

1400

(5866)

Скорость детонации, км/с

7

7,6

8,85

9,25

8,35

Чувствительность к удару по

ГОСТ 4545-88, %

4-8

48-60

80

84-96

100

 

Во второй половине ХХ века был синтезирован и изучен ряд мощных бризантных ВВ, имеющих рекордные значения скорости детонации (9,1-10,2 км/с) - табл.4. В настоящее время наиболее перспективными среди мощных ВВ представляются такие продукты как CL-20 и отчасти TNAZ.

 


 

Метательные взрывчатые вещества

 

К метательным ВВ относятся пороха и ракетные топлива. Служебным видом превращения ракетных топлив и порохов является горение, протекающее за счет содержащихся в них горючего и окислителя. В случае использования мощного инициирующего импульса могут детонировать. При утилизации ракет твердое топливо используют в виде добавок в промышленные ВВ; разработана технология синтеза ультрадисперсных алмазов при взрывании твердого ракетного топлива. Оптимальным для ракетного пороха и смесевого ракетного твердого топлива является кислородный коэффициент порядка 0,65–0,70 (кислородный коэффициент характеризует содержание в топливе окислительных элементов по отношению к необходимому для полного сгорания горючих компонентов).

Взрывчатое превращение дымного пороха при возбуждении искрой или пламенем происходит в форме взрывного горения, скорость которого всегда меньше скорости детонации и измеряется сотнями метров в секунду. При возбуждении взрыва капсюлем-детонатором или детонирующим шнуром дымный порох способен детонировать. Используют порох в огнепроводных шнурах (ОШ), в качестве зарядов при отбойке некоторых видов поделочного камня и в других операциях, требующих совершения механической работы. Пороха являются многокомпонентными механическими системами и делятся на дымный (черный) порох и бездымный. Дымный порох известен с XI столетия. В его состав входят нитрат калия KNO3 (75%), древесный уголь (15%) и сера (10%). Используют дымный порох в огнепроводных шнурах (Бикфордовых шнурах), в качестве охотничьего пороха.

Таблица 4

Свойства мощных бризантных ВВ

clip_image178

 

Бездымные пороха или пороха коллоидного типа используются в стрелковом оружии, артиллерийских снарядах и в качестве ракетных топлив. Основным компонентом является нитроцеллюлоза различной степени нитрации (так, динитрат целлюлозы содержит 11,11% азота, тринитрат – 14,14% и т.д.). Целлюлоза представляет собой гидроксилсодержащий природный полимер класса полисахаридов. Нитраты целлюлозы обычно содержат 12,5–13,5% азота (их называют пироксилинами) или 11,5–12% (коллоксилины). При желатинизации нитроцеллюлозы используют пластификаторы различной природы, что обуславливает деление этих порохов на ряд групп.

Лазерные пороха, разработанные сравнительно недавно, являются специальным топливом, обеспечивающим при сгорании высокотемпературную смесь продуктов строго определенного состава, способных в определенных условиях генерировать когерентное электромагнитное излучение с требуемой длиной волны. В состав лазерно-активной среды входят как минимум 2-3 газовые компоненты (оксиды углерода, молекулы воды, азота и др.).

Ракетные топливаявляются смесевыми системами и могут быть жидкими, твердыми и комбинированными. Основными компонентами жидкого топлива являются жидкое горючее и жидкий окислитель. В качестве жидкого горючего используют водород, керосин, гидриды металлов, несимметричный диметилгидразин. Основой жидкого окислителя являются фтор, окись фтора, кислород, смесь фтора с кислородом, азотная кислота, тетранитрометан и др.

Основными компонентами твердого ракетного топлива (смесевого твердого ракетного топлива – СТРТ) являются кристаллический окислитель: аммониевая соль динитразовой кислоты, перхлорат аммония и др. В качестве горючего используют каучук, который является одновременно и связующим компонентом. Кроме этого в СТРТ добавляют различные пластификаторы, отвердители, горючие добавки – мощные БВВ (например, октоген), порошкообразные металлы и гидриды металлов, стабилизаторы.

При утилизации СТРТ и выполнении других работ следует учитывать высокую потенциальную опасность, связанную с изменениями физико-химических характеристик, произошедшими за время длительного хранения: изменение взрывчатых характеристик, ухудшение эластичности и прочности, нарушение сплошности зарядов, появление дефектов (Трещины, отслоения и др.), снижение чувствительности к удару и трению.

Пиротехнические составы – механические смеси неорганических окислителей с органическими или металлическими горючими веществами и технологическими добавками. Горение является служебной формой химического превращения. Пиротехнические составы используют в различных отраслях народного хозяйства и оборонной технике. При определенных условия могут детонировать (взрывы на заводах пиротехнических средств в Нидерландах, Италии, Испании, Китае и др. стран).

 

 


 

Промышленные взрывчатые вещества

 

Большинство промышленных взрывчатых веществ (ПВВ) представляют собой смесь химически разнородных материалов; как правило, они выпускаются в виде порошков, гранул или суспензий, состоящих из компонентов с частицами различных размеров и формы, различных по физическим свойствам, по агрегатному состоянию. Такие неоднородности являются причиной физико-химических особенностей возбуждения и развития детонации, процесса взрыва, по многим параметрам отличающихся от закономерностей взрыва индивидуальных ВВ. Особые свойства ПВВ придают такие компоненты как окислители, флегматизаторы, сенсибилизаторы, структурообразующие, горючие и гидрофобные добавки и др.

Окислители– вещества, содержащие избыточный кислород, расходуемый при взрыве на окисление горючих элементов (аммиачная селитра – АС, калиевая селитра – КаС, натриевая селитра – НаС и т.д). Горючие добавки – твердые или жидкие вещества, как правило, невзрывчатые – тонкоизмельченный уголь, древесная мука, соляровое масло. Горючие добавки вводят в состав ВВ для увеличения количества энергии, выделяемой при взрыве. Роль горючих добавок выполняют также ВВ (тротил, гексоген и другие), имеющие в своем составе недостаточное количество кислорода для полного окисления содержащихся в них горючих элементов.

Пламегасителивводят в состав только предохранительных ВВ для снижения температуры взрыва и уменьшения вероятности воспламенения метановоздушных и пылевоздушных смесей в шахтах. В качестве пламегасителей чаще всего вводят NaCl и KCl. Пламегасители не участвуют в реакции при взрыве, только нагреваются и испаряются, снижая тем самым температуру газов взрыва.

Сенсибилизаторы– вещества, вводимые в состав ВВ для повышения его чувствительности к восприятию и передаче детонации. Это, как правило, мощные ВВ (тротил, гексоген, нитроэфиры), чувствительные к инициирующему импульсу, которые в смеси малочувствительных взрывчатых веществ (АС и т.п.) с невзрывчатыми (древесная или хлопковая мука) обеспечивают нормальную чувствительность такого смесевого ВВ к инициированию. Роль сенсибилизатора могут выполнять и невзрывчатые вещества (горючие добавки): соляровое масло, древесная мука или уголь. При этом образуются простейшие смесевые ВВ: динамоны, игданиты, гранулиты.

Стабилизаторы(древесная, торфяная мука и др.) вводят для повышения химической и физической стойкости ВВ.

Флегматизаторы– легкоплавкие вещества, масла, имеющие высокую теплоемкость и высокую температуру вспышки, обволакивающие частицы ВВ и не вступающие с ним в реакцию. Введение флегматизаторов снижает чувствительность ВВ к механическим воздействиям и обеспечивает более безопасные условия его применения. Часто используют вазелин, парафин и различные масла.

Смесевые ВВ для шахт и карьеров – порошкообразные ВВ на основе сухих порошкообразных компонентов, а также с добавками жидких веществ. Из многокомпонентных смесей наибольшее применение имеют следующие основные группы ВВ: а) аммониты – смесь аммиачной селитры, тротила и невзрывчатых горючих добавок. В состав скального аммонита входит добавка гексогена; аммониты предохранительные для шахт и рудников выпускают с добавкой пламегасителей - аммонит №6ЖВ (ожелезненная селитра марки ЖВ), аммонит АП-5ЖВ, аммонит ПЖВ-20, аммонит Т-19 и др. б) Аммоналы - аммониты с добавкой алюминиевой пудры. в) Детониты - смесь аммиачной селитры, нитроэфиров и алюминиевой пудры. г) Динамоны - смесь аммиачной селитры и невзрывчатых горючих добавок. д) Гранулированные ВВ – смеси на основе сухих гранулированных, чешуйчатых компонентов или гранулированных сплавов компонентов. е) Граммониты – смесь гранулированной аммиачной селитры с гранулированным тротилом или с чешуйчатым тротилом. ж) Гранулиты – смеси гранулированной аммиачной селитры с жидкими и порошкообразными невзрывчатыми горючими добавками. з) Игданиты – смесь гранулированной аммиачной селитры с жидкой горючей добавкой. и) Гранулотол – гранулированный тротил. к) Алюмотол – гранулированный сплав тротила с алюминиевой пудрой. л) Водосодержащие ВВ – на основе сухих гранулированных или чешуйчатых компонентов или гранулированных сплавов компонентов с добавками холодного или горячего раствора аммиачной селитры, NaCl или КCl, загущающих раствор и стабилизирующих заряд добавок. м) Акватолы – смесь гранулированной аммиачной селитры и гранулированного тротила с раствором селитр, загущающих и стабилизирующих добавок. н) Эмульсионные ВВ – смеси холодного или горячего насыщенного раствора селитр с жидкой невзрывчатой горючей добавкой и эмульгатором, которая при обработке ее в диспергаторе превращается в водоустойчивое подвижное ВВ. При остывании горячее эмульсионное ВВ твердеет.

Наиболее важными свойствами промышленных ВВ (кроме взрывчатых характеристик, эксплуатационных качеств ВВ, стабильности) относят гигроскопичность, слеживаемость, химическая стойкость, водоустойчивость, пластичность, текучесть, уплотняемость, сыпучесть, старение, летучесть, эксудацию и др.

Гигроскопичность- это способность промышленных ВВ поглощать влагу из окружающей атмосферы. Способность к увлажнению аммиачно-селитренных ВВ обусловлена высокой гигроскопичностью основного компонента - аммиачной селитры, – что приводит к ослаблению и полной потере взрывчатых составов. Накопившаяся влага флегматизирует ВВ.

Слеживаемость- это способность некоторых порошкообразных веществ терять при хранении сыпучесть и превращаться в прочную сплошную массу. Слежавшиеся патроны ВВ имеют повышенную опасность. В такие патроны затруднено введение детонатора. Слежавшиеся аммониты (особенно в патронах малого диаметра) мало восприимчива к первичным средствам инициирования, отличаются пониженной детонационной способностью.

Химическая стойкость(стабильность) характеризует скорость разложения ВВ при хранении. Если ВВ обладает низкой стабильностью, то в результате хранения больших его количеств может произойти самоускоряющееся разложение и взрыв. В этом случае продукты первичного распада катализируют дальнейшую реакцию, ускоряет, таким образом процесс разложения.

Водоустойчивость– это способность ВВ сохранять взрывчатые свойства при погружении в воду. Для повышения водоустойчивости ВВ разработано много способов, один из которых характеризуется введением стеарата кальция или цинка в порошкообразные нитроглицериновые ВВ – детониты, углениты и др. Для снижения смачивающей способности жидких нитроэфиров в этих ВВ их слабо желатинируют коллоидным хлопком.

Пластичные ВВ - это ВВ высоковязкой структуры, способное легко деформироваться при незначительных нагрузках и полностью заполнять зарядные полости. К таким ВВ относятся динамиты и акваниты.

Текучие (льющиеся) ВВ – низковязкие акватолы, ифзаниты и некоторые акваниты, содержащие до 30% водной желатины. Такие ВВ можно транспортировать по шлангам.

Уплотняемость- это качество ВВ, определяющее плотность заряжания зарядной емкости. Уплотняемость возрастает при наличии жидкой фазы в ВВ.

Сыпучесть- это способность ВВ легко транспортироваться по трубам и шлангам к месту заряжания, свободно высыпаться, хорошо заполнять пространство скважин. Сыпучесть иногда характеризуют углом естественного откоса. Гранулиты, зерногранулиты, гранулотол - это промышленные ВВ, характеризующиеся хорошей сыпучестью.

Старение- это необратимое ухудшение взрывчатых свойств ВВ при хранении, вызванные физико-химическими изменениями в веществе в результате внутренних процессов или взаимодействия с внешней средой. В связи с процессами старения для всех ПВВ устанавливается гарантийный срок хранения, в течение которого гарантировано сохранение основных показателей технических условий не ниже регламентированных норм.

Летучесть- это способность некоторых жидких компонентов ПВВ испаряться. К таким компонентам относят нитроглицерин, динитроэтиленгликоль, нитрогликоль. Потеря веса таких ВВ приводит к весьма заметному изменению их взрывчатых свойств.

Эксудация- это процесс выделения жидкой фазы из твердой многокомпонентной системы. Это явление наблюдается при старении динамитов, в результате которого на поверхности зарядов появляются капельки чистого нитроглицерина, при этом изменяются взрывчатые характеристики, возрастает опасность в обращении с такими ВВ. К нарушению физической стойкости ВВ могут приводить расслаиваемость компонентов систем, рекристаллизация компонентов и др.

Для открытых работ допускаются ВВ, у которых не регламентируется состав продуктов взрыва. К ним не предъявляют строгих требований по детонационной способности.

К ВВ, предназначенным для ведения взрывных работ при подземной добыче полезных ископаемых, кроме шахт, опасных по пыли и газу, предъявляются требования по минимальному образованию ядовитых газов (CO, CO2, NO, NO2 , SO2) при взрыве.

Слежавшиеся и не поддающиеся размятию руками порошкообразные ВВ, не содержащие гексогена или жидких нитроэфиров, должны измельчаться в соответствие с требованиями "Единых правил безопасности при взрывных работах", после чего могут использоваться только в шахтах (рудниках), не опасных по газу или разрабатывающих пласты (рудные тела), не опасные по взрывам пыли, а также при работах на земной поверхности.

Слежавщиеся порошкообразные ВВ, содержащие гексоген или жидкие нитроэфиры, должны использоваться без разминания или измельчения только при взрывных работах на земной поверхности.

В угольных и сланцевых шахтах, опасных по газу или пыли, при заряжании запрещается разрезать оболочку патронов.

 

 


 

Основные составляющие промышленных ВВ

 

В 1867 году в Швеции И. Олсон и И. Норбин получили патент на использование аммиачной селитры в составах ВВ. Аммиачная селитра(азотнокислый аммоний или нитрат аммония), NH4NO3 представляет собой бесцветное кристаллическое вещество. Выпускается в виде чешуек, гранул, кристаллов. Легко растворяется в воде, Плотность 1,56-1,74 г/см3; при температуре от –18° до +32°С плотность составляет 1,725 г/см3.

В зависимости от температуры аммиачная селитра (АС) может существовать в различных модификациях. Фазовые переходы в АС осуществляются при температурах: –16°С; +32°С; +85°С; +125°С. При температуре 169,1°С АС плавится. При разложении один грамм селитры выделяет 0,2 г кислорода, окисляющего водород, углерод, алюминий. Из-за этого свойства АС используют в качестве компонента взрывчатых смесей. Насыпная плотность АС 0,8-0,9 г/см3 . Толщина слоя, по которому устойчиво может распространяться детонация, равна 30-50 мм, а слоя из пыли АС - 15÷20 мм. Критический диаметр открытого заряда АС при плотности 0,8 г/см3 -  100 мм, а сухая и тонкоизмельченная АС имеет критический диаметр 10 мм, товарная (обычная селитра) имеет критический диаметр 200÷250 мм. Растворение АС в воде происходит со значительным поглощением тепла и понижением температуры замерзания раствора. При растворении 6 частей в 10 частях воды температура снижается на 17°, а раствор, содержащий 50г АС на 100 г воды, замерзает при –18°С. В связи с этим в местах хранения АС и аммиачно-селитренных ВВ следует систематически вести наблюдения за температурой и влажностью воздуха.

Известные трудности возникают при работе со слежавшейся АС. Для

уменьшения слеживаемости АС выпускают в виде гранул или крупных чешуек. Водоустойчивая аммиачная селитра ЖВ, содержащая гидрофобную смесь парафина и железных солей жирных кислот, обладает заметно меньшей слеживаемостью. Скорость детонации АС в зависимости от условий 1,5-3,4 км/с. Инициирование зарядов АС осуществляют промежуточным детонатором (например, зарядом аммонита, массой 5÷20% массы заряда АС). Теплота взрыва 335÷375 ккал/кг. В зависимости от материала оболочки существенно изменяется критический диаметр АС: в бумажной оболочке - 10÷12 см, а в стальной - 5 см. Гранулированная или чешуйчатая АС в мешке не детонирует от взрыва 500 г тротиловой шашки. По условиям хранения и транспортирования аммиачная селитра не относится к ВВ.

Натриевая, калиевая и кальциевая селитры имеют высокую плотность (более 2 г/см3) и в два раза больше содержат кислорода, чем АС. Но эти селитры имеют ограниченное применение, их добавки повышают плотность ВВ, снижают температуру его замерзания, хорошо удерживают воду в составе ВВ. Смеси перечисленных селитр с горючими добавками более чувствительны к механическим воздействиям и воспламенению.

Динамоны- это смеси АС с горючими невзрывчатыми веществами: тонкодисперсной смеси АС с горючими веществами типа древесной муки, измельченного торфа и других целлюлозных материалов, а также алюминиевой пудры и горючих жидкостей. К этой группе относятся игданит и гранулит. Первый получают путем смешивания гранулированной АС с дизельным топливом (ДТ). Названо это ВВ было авторами (1958 г.) в честь института горного дела им. А.А. Скочинского - ИГД. Второе ВВ - гранулит - представляет собой смесь гранулированной АС с минеральными маслами, иногда содержащие добавку алюминиевой пудры. Известны гранулиты АС-4, АС-8, гранулит-М и др.

 

 


 

Тротил

 

Тротил(тринитротолуол, тол) - это ВВ класса химических соединений (однокомпонентное ВВ). Впервые получен в 1863г., а в 1891 г. его стали выпускать как промышленный продукт во многих странах мира. Кристаллы чистого тротила имеют цвет от светло- до темно-желтого.

 

Цвет

Плотность, г/см3

Тплавления,°C

Скорость детонации,м/с

Желтый

1,66 (при 20°C)

81

6900

КБ,%

Температура взрыва, t 0C

М, г/моль

Растворимость в H2O, %

-74

2950

227

0,02 (при 15°C)

 

Тротил C6H2(NO2)3CH3является одним из самых распространенных ВВ и представляет собой кристаллическое вещество. Он выдерживает нагревание в течение нескольких часов при температуре до 240°С. С химической точки зрения тротил представляет собой тринитротолуол и относится к классу нитросоединений ароматического ряда:

clip_image180

Впервые чистый тротил был получен в 1863 году, а применяется в практике взрывного дела с 1891 года. На его основе разработан целый ряд смесевых ВВ. Так А.А. Солонин изобрел аммотол - смесь аммиачной селитры с тротилом. Уже к началу XX века тротил стал основным бризантным ВВ, не уступая своих позиций и в настоящее время.

Благодаря невысокой реакционной способности, он весьма стоек и легко смешивается или сплавляется с различными веществами (селитрой, алюминием, гексогеном, ксилилом и т.д.). Тротил мало чувствителен к механическим воздействиям. Взрывается при падениигруза 10 кг с высоты 25 см. Чувствительность к детонации мала, причем чувствительность литого тротила заметно ниже, чем прессованного. Литой тротил не взрывается даже от штатного капсюля-детонатора, ему необходим промежуточный детонатор.

Тротил получают нитрованием толуола, производимого из каменноугольной смолы на коксовых заводах или из нефти, подвергшейся пиролизу. Нитрование производится концентрированной азотной кислотой:

C6H2(NO2)3CH3+3HNO3= C6H2(NO2)3CH3+3H2O.

Наряду с одностадийной технологией применяются двух- и трёхстадийные способы нитрования. После нитрования необходима тщательная промывка горячей водой от кислоты и очистка от несимметричных изомеров, динитротолуола и других примесей. Очистку производят раствором сульфита натрия или перекристаллизацией из чистого этилового спирта. После очистки тротил сушат и чешуируют. Готовый тротил должен представлять собой однородную массу, состоящую из чешуек (кристаллов ромбической формы) светло-жёлтого или жёлтого цвета с температурой затвердевания не менее 80,20С, с содержанием влаги и летучих не более 0,07 %, с кислотностью не более 0,01%. Содержание примесей, не растворимых в бензоле или толуоле, должно быть менее 0,1%. Насыпная плотность порошкообразного тротила0,9 г/см3. При прессовании под давлением около 4000 кг/см2 плотность достигает 1,6 г/см3. Литой тротил имеет плотность 1,54 -1,59г/ см3.

Температура вспышки тротила около 310°С. Вспышка взрывом не сопровождается. Горение тротила в замкнутом пространстве или больших масс может привести к взрыву. Восприимчивость тротила к инициированию можно по мере ее уменьшения представить таким рядом: порошкообразный, прессованный, чешуйчатый, гранулированный, литой. Прессованный тротил инициируют капсюлем-детонатором (КД) или несколькими витками детонирующего шнура (ДШ). Для взрыва литого тротила требуется промежуточный мощный детонатор из прессованных шашек тротила или патронов аммонита. Теплота взрыва тротила при плотностях 0,85 г/см3 и 1,5 г/см3 составляет соответственно 3393,9 кДж/кг и 4231,9 кДж/кг. Скорость детонации сухого гранулированного тротила в открытых зарядах диаметром 60 мм составляет 2,7÷3,3 км/с, в водонаполненном состоянии - 6 км/с. Критический диаметр детонации сухого гранулированного тротила в открытых зарядах около 60 мм, водонаполненного 25÷30 мм кислородный баланс (–74%). Работоспособность водонаполненного гранулированного тротила по пробе Трауцля дает 310-315 см3 , сухого порошкообразного - 285 см3.

Бризантность водонаполненного гранулированного тротила составляет 23 мм, сухого гранулированного - 9 мм, а тонкоизмельченного - 16 мм. В настоящее время из-за токсичности практически все страны мира не

производят тротил и не используют его в промышленности.

Тротил практически нерастворим в воде, имеет высокую химическую стойкость. Вспышка его обычно не сопровождается взрывом. Температура вспышки тротила составляет 310°С. Переход горения в детонацию наблюдается только при воспламенении тротила в замкнутом пространстве или в очень больших количествах.

Применяют тротил в порошкообразном, прессованном, чешуйчатом, гранулированном виде, а иногда в виде кусков и литых зарядов. При попадании в тротил песка или других твердых примесей  резко возрастает его чувствительность к удару и трению, что необходимо учитывать при закладке в скважины. Наиболее чувствительным  к инициированию является порошкообразный тротил, наименее – литой.

Порошкообразный и прессованный тротил взрываются от капсюля-детонатора или от нескольких витков ДШ. Для взрыва гранулированного или литого тротила требуется более мощный промежуточный детонатор из тротиловых шашек или патроноваммонита.

Очень часто на практике применяют понятие энергетического эквивалента – тротилового эквивалента. Для этого выбирают в качестве эталонного ВВ тротил и опытным путем для него находят точное значение соответствующих функций P=f[(G)1/3R-1] и I=[(G)1/6R-1], где: Р – давление при взрыве, I – полный импульс, G – вес заряда, R - расстояние от центра заряда до места измерения. После чего определяют вес заряда исследуемого ВВ, который на любом расстоянии дает одинаковое значение параметров волны с зарядом тротила известного веса. Эта величина и называется тротиловым эквивалентом ВВ. Тротиловый эквивалент m соответствует отношению показателей работоспособности данного ВВ (Qvh)ВВ по отношению к таким же показателям тpoтила (Qvh)ТР: m=[(Qvh)ВВ/(Qvh)ТР].

В большинстве случаев при оценке тротилового эквивалента пользуются отношением только теплот взрыва m=[(Qv)ВВ/(Qv)ТР], что целесообразно для ВВ с близким составомпродуктов взрыва.

Разложение тротила при взрывчатом превращении происходит в соответствии с уравнением реакции:

C6H2(NO2)3CH3=2,5H2O+3,5CO+3,5C+1,5N2 с тепловым эффектом 932кДж/моль или 4235 кДж/кг, при этом объём газообразных продуктов составляет порядка 0,750 м3 на 1 кг тротила. Тротил имеет большой отрицательный кислородный баланс, из-за чего при его взрыве выделяется значительное количество твёрдых продуктов - сажи.

 

Алюмотол- это смесь тротила с алюминиевым порошком (№15). Гранулированный алюмотол готовят путем смешивания расплавленного тротила с алюминиевым порошком и последующей грануляции полученной смеси в воде. Продукт представляет собой серебристого цвета гранулы диаметром 3-5 мм. Теплота взрыва водонаполненного алюмотола составляет 5195,6 кДж/кг; работоспособность 420-430 см3; бризантность - 24,5 мм. Скорость детонации в открытых зарядах диаметром 60 мм 5,5÷6,0 км/с.

 

 


 

Тетрил

 

 

Тетрил(тринитрофенилметилнитрамин) C6H2(NO2)4NCH3  

 

Цвет

Плотность, г/см3

Тзатвердевания,°C

Скорость детонации,м/с

Желтый

1,78 (при 20°C)

127,7

7470

КБ,%

Температура взрыва, t°C

М, г/моль

Прессуемость, г/см3

-47,4

3900

287

до 1,68

 

представляет собой порошкообразную массу мелкокристаллического вещества светло-желтого цвета с температурой плавления около130°С.

В соответствии с химической номенклатурой тетрил является тринитрофенилметилнитроамином и относится к классу нитросоединений ароматического ряда:

clip_image182

Все нитросоединения нерастворимы или малорастворимы в воде, практически не гигроскопичны и водоустойчивы. С увеличением числа нитрогрупп взрывчатые свойства нитросоединений усиливаются, а токсичность, наоборот, снижается. Температура вспышки тетрила находится в интервале температур 190-194°С. При горении даже в сравнительно небольших количествах он способен взрываться. Тетрил относится к категории ВВ весьма чувствительных к тепловому и механическому воздействию. Примесь даже 0,05% песка резко повышает чувствительность тетрила к удару и трению. Соединения, у которых нитрогруппа связана с углеродным атомом через азот, характеризуются меньшей химической устойчивостью. Более того, они обладают высокой чувствительностью и повышенной опасностью в обращении: тетрил, имеющий температуру плавления около 128°С, при длительной выдержке при температуре 140°С способен к самовоспламенению. Тетрил также обладает большой восприимчивостью к детонации и очень хорошо передает ее другим ВВ. Чувствительность к механическому воздействию и детонации выше, чем у пикриновой кислоты, бризантность также выше (19 мм).

Используют для изготовления шашек - промежуточных детонаторов. В виду большой мощности тетрил особенно пригоден для изготовления капсюлей-детонаторов и детонаторов (ЭД, КД). На открытых взрывных работах тетрил применяют в виде шашек как промежуточный детонатор для инициирования маловосприимчивых ВВ. Для снаряжения боеприпасов практически не применяется.

Получают тетрил нитрованием сульфата диметиланилина:

clip_image184

Сульфат диметиланилина получают растворением диметиланилина в избытке серной кислоты. Смесь обрабатывается азотной кислотой. Из промытого от остатков кислоты осадка получают готовый тетрил кристаллизацией в процессе сушки.

Разложение тетрила при взрывчатом превращении происходит в соответствии с уравнением реакции: C6H2(NO2)4NCH3=2,5H2O+5,5CO+1,5C+2,5N2 с тепловым эффектом 1246 кДж/моль или 4610 кДж/кг, при этом объём газообразных продуктов составляет порядка 0,740 м3 на 1 кг тетрила. Тетрил имеет четко выраженный отрицательный кислородный баланс, что необходимо учитывать на практике.

 

 


 

Гексоген

 

Гексоген(циклотриметилентринитроамин, циклонит, RDX) (CH2)3N3(NO2)3 представляет собой белое порошкообразное кристаллическое вещество без вкуса и запаха с температурой вспышки 230°C. С химической точки зрения гексоген представляет собой циклотриметилентринитроамин:

 

Цвет

Плотность, г/см3

Тплавления,°C

Скорость детонации,м/с

Белый

1,816 (при 20°C)

205

8100

КБ,%

Температура взрыва, t 0C

М, г/моль

Прессуемость, г/см3

-21,6

3800

222

до 1,73

 

clip_image186

В воде он практически нерастворим. Гексоген чрезвычайно токсичен и обладает химической стойкостью: признаки разложения заметны лишь при температуре около 200°C. Обладает работоспособностью по Трауцлю 475 см3, фугасность составляет 470 мл. При воспламенении сгорает с характерным ярким пламенем. Температура вспышки - 290°С. Чувствительность к удару - 30 см. Теплота взрыва в прессованном виде 5447 кДж/кг. При испытаниях по стандартной пробе Гесса навеска гексогена разрушает свинцовый столбик. Впервые гексоген был получены в конце XIX века, но как ВВ нашел применение только с 1920 г.

Применяется как вторичное инициирующее ВВ в детонаторах; в смеси с тротилом или в сплаве с тротилом в виде шашек ТГ; в качестве сенсибилизатора в некоторых сортах мощных аммонитов (например, в аммоните скальном №1).

Гексоген флегматизируют воскообразными веществами в составах А-IХ-I, А-IХ-2 или специальным лаком в составе ГФГ-2; с тротилом или алюминием – шашки ТГА; в виде пластичных и эластичных ВВ на основе гексогена. Используют в некоторых типах твердых ракетных топлив в качестве активного горючего.

Гексоген по мощности значительно превзошёл ранее применявшиеся бризантные взрывчатые вещества: 1 кг гексогена, занимающий объем 0,6л, выделяет при взрыве 5,40 МДж за 10-5 с, что соответствует 500 ГВт - т.е. в десятки раз больше, чем мощность крупнейшей электростанции; а энергии, полученной при взрыве 200 г этого ВВ при условии полного использования, достаточно для того, чтобы поднять массу в 120 тонн на высоту в 1 метр. Во время второй мировой войны он широко использовался для изготовления детонаторов и разрывных зарядов бронебойных и кумулятивных боеприпасов.

Получают гексоген нитрованием уротропина (CH2)6N4 (температура плавления 165°С, хорошо растворим в воде, температура вспышки 190°С, фугасность 190 мл.):

clip_image188

С целью увеличения выхода гексогена возможно использование динитрата уротропина вместо чистого уротропина, но при этом важное значение имеют концентрация азотной кислоты и наличие оксидов азота, которые способны вызывать окисление или "выгорание" уротропина. Гексоген, полученный нитрованием динитрата уротропина, почти полностью растворяется в азотной кислоте. Для его выделения данный раствор разбавляют до концентрации кислоты <60%, при которой растворимость гексогена незначительна. При этом необходимо предотвращать повышение температуры.

Чувствительность к удару меньше, чем у ТЭНа, но больше, чем у тротила. Наряду с ТЭНом гексоген является сильнейшим и наиболее бризантным ВВ. Для уменьшения чувствительности гексоген обычно флегматизируют парафином или воском. В чистом виде он пригоден только для изготовления капсюлей-детонаторов (в качестве вторичного инициирующего ВВ) и детонирующих шнуров. В смесях с тротилом гексоген используется для снаряжения боеприпасов, а также применяется в качестве компонента некоторых сортов аммонитов с целью увеличения их мощности и для изготовления зарядов и торпед, используемых при прострелке нефтяных скважин. В качестве примера использования гексогена в пластиковых взрывчатках можно указать пластифицированный гексоген С-1 (название по военной классификации) - смесь 88% гексогена, 11% вазелина и 1% белкового (казеинового) клея в пластиковой укупорке.

Для ВВ с отрицательным кислородным балансом, коим является гексоген, преобладающей реакцией считают окисление углерода до СО: 2С+O2=2CO. Если при этом не весь кислород расходуется, то его остаток практически равными долями идет на окисление СО до СО2 и Н2 до H2O, что обусловлено близкими тепловыми эффектами реакцийCO+0,5O2=CO2+242 кДж/моль и H2+0,5O2=H2O+282 кДж/моль. По этой схеме гексоген при взрыве образует следующие продукты распада: С3H6N3(NO2)3=3H2O+3CO+3N2 с тепловым эффектом1128 кДж/моль или 5400 кДж/кг. Объём образующихся газов при взрыве составляет порядка 0,890 м3/кг.

 

Октоген(циклотетраметилентетранитрамин, НМХ) C4H8N8O8 - кристаллический белый порошок; плотность монокристаллов 1,9 г/см3; температура плавления с разложением 277°С. Температура вспышки 335°С. Токсичен. Скорость детонации около 9 км/с. Получен в 1941 г. Обладает относительно высокой термостабильностью. Входит в состав твердых ракетных топлив. Его используют в зарядах для перфорации глубоких нефтяных скважин с температурой выше 180°С. Имеет 4 кристаллических модификации. Одна из них - β-модификация - является стабильной формой, обладает наименьшей чувствительностью к механическим воздействиям.

 

ТЭН(тетранитропентаэритрит) C5H8(ONO2)4 получен в 1894 году. Кристаллический порошок белого цвета. Плотность монокристаллов 1,728 г/см3. Влаги не боится. Скорость детонации 8,2÷8,7 км/с. Температура вспышки 255°С, температура плавления с разложением - 141°С, работоспособность 500 см3. Чувствительность к удару 30 см. Химически стойкое вещество. Теплота взрыва 6201 кДж/кг. Бризантность высокая: свинцовый столбик разрушается. Небольшие количества тэна сгорают спокойно, при повышенном давлении горение переходит во взрыв. Обладает высокой чувствительностью к трению и удару, поэтому его выпускают не только в чистом виде, но и флегматизированным парафином и другими подобными веществами. Критический диаметр детонации тэна при плотности 1 г/см3 равен 3 мм. Используется в качестве вторичного инициирующего ВВ в некоторых КД. Застывшая суспензия тэна в тротиле (пентолит) применяется в шашках в качестве промежуточных детонаторов. Используется для изготовления пластитов и эластитов. Применяется в качестве медицинского препарата под названием "ЭРИНИТ", который является аналогом нитроглицерина. Кроме этого, ТЭН нашел широкое применение в детонирующих шнурах, поскольку имеет критический диаметр детонации - 1 мм.

 

 


 

Нитроглицерин

 

 

Нитроглицерин(тринитрат глицерина, НГ, НГЦ) C3H5(ONO2)3  

 

Цвет

Плотность, г/см3

Тзамерзания,°C

Скорость детонации,м/с

Бесцветен

1,600 (при 16°C)

+13,2

7500

КБ,%

Температура взрыва, t 0C

М, г/моль

Растворимость в H2O, г/дм3

+3,5

4100

227

1,800 (при 20°C)

 

представляет собой маслянистую бесцветную жидкость с характерным сладким вкусом (технический нитроглицерин имеет слабо жёлтую окраску). При температуре более 50°С летуч. Хорошо растворим в большинстве органических растворителей, хорошо растворяет коллоидный хлопок, на чем основано получение желатинизированного нитроглицерина для пластичных динамитов. Заключает в себе большой запас энергии: его работоспособность 590 см3, бризантность по Гессу 24-26 мм. Является сильнодействующим ядом, вызывая острые головные боли при вдыхании его или при соприкосновении с кожей. От пламени загорается с некоторым трудом; легко воспламеняется искрой огнепроводного шнура. В небольших количествах (до 2 кг) сгорает спокойно. Горение больших количеств переходит во взрыв.

С химической точки зрения нитроглицерин представляет собой глицеринтринитрат: CH2ONO2-CHONO2-CH2ONO2.

Тринитроглицерин впервые получил в 1846 г. в Италии химик-исследователь А. Собреро. Это, безусловно, способствовало целому комплексу исследований по поиску новых ВВ. Однако до 1854 г. нитроглицерин из-за большой опасности при получении и использовании на практике не был востребован. Впервые предложение о практическом применении нитроглицерина для разрывных зарядов в артиллерийских снарядах внес в 1854 году, во время Крымской войны, профессор Н.Н. Зинин. Но вследствие большой опасности при снаряжении и при использовании боеприпасов, начинённых нитроглицерином, Главное артиллерийское управление отказалось от применения нитроглицерина. Поэтому впервые чистый нитроглицерин был применен для изготовления взрыв­чатых смесей в горно-добывающей промышленности только в 1867 г. Однако на зо­лотых приисках в Восточной Сибири при производстве взрывных работ артиллерийский офицер З.Ф. Петрушевский, работавший под руководством знаменитого рус­ского химика Н.Н. Зинина, использовал разработанное им в 1853 г. ВВ на основе нитроглицерина, аналогичное по составу динамитам - «магне­зиальный динамит» (75% нитроглицерина и 25% углекислого магния). Но под­линную революцию в мирном и военном применении динамитов и порохов на основе нитроглицерина, а также средств их инициирова­ния произвел знаменитый шведский инженер и предприниматель А. Нобель, разработавший в 1888 г. нитроглицериновый баллиститный порох, получаемый путем желатинизации нитроцеллюлозы нитроглицерином. В России техно­логию бездымного пироксилинового пороха разработал в 1891 г. Д.И. Менделеев.

Нитроглицерин получают обработкой глицерина смесью концентрированных азотной и серной кислот. Хорошо отмытый от этих кислот он достаточно химически стоек при комнатной температуре, но при наличии следов кислот способен постепенно разлагаться с последующим взрывом.

Чувствительность к удару весьма велика: детонирует при падении груза массой 2 кг с высоты 4 см. Применяется в смеси с нитроцеллюлозой для получения нитроглицеринового пороха, а в смеси с нитроцеллюлозой и другими горючими наполнителями для производства динамитов. Взрывчатые смеси на основе нитроглицерина содержат обычно нитроглицерин в желатинизированном виде, т.е. в виде смеси с растворяющей его нитроцеллюлозой. Полученный гель требует добавок инертных горючих компонентов (древесной муки, ваты, песка и т.д.) или неорганических окислителей (аммиачной или калиевой селитры). Однако следует отметить, что из-за высокой чувствительности и опасности в обращении, а также дороговизны взрывчатые смеси на основе нитроглицерина (динамиты) в последнее время утратили свое былое значение во взрывном деле.

Направление протекания реакции любого взрывчатого превращения лимитируется принципом Ле-Шателье-Брауна и законами химической термодинамики. Взрыв можно рассматривать как термохимическую реакцию, протекающую в адиабатических условиях, поэтому в соответствии со вторым законом термодинамики, базирующемся на фундаментальном принципе максимизации энтропии, любая изолированная система будет стремиться перейти в такое состояние, при котором бы обеспечивался максимум значения энтропии системы. В предельном случае это обуславливает образование термодинамически наиболее устойчивых соединений (стабильных фаз), что, в свою очередь, сопровождается максимальным тепловым эффектом процесса. Так разложение нитроглицерина осуществляется в соответствии с уравнением реакции:

 C3H5(ONO2)3=2,5H2O+3CO2+1,5N2+0,25O2 с тепловым эффектом1420 кДж/моль или 6200 кДж/кг. Равновесие этой химической реакции при взрыве смещается в направлении образования высших оксидов углерода и водорода CO2 и H2O, молекулярных азота N2 и кислорода O2, т.е. в направлении образования продуктов реакции. При взрыве образуется порядка 0,715 м3 газообразных продуктов на 1 кг нитроглицерина.

Ограниченно применяется в качестве сенсибилизаторов при изготовлении некоторых предохранительных ВВ: победитов, угленитов, серного и нефтяного аммонитов. Единственное штатное БВВ жидкое и единственное с положительным кислородным балансом.

НитрогликольC2H4(ONO2)2 - прозрачная жидкость с удельным весом 1,5 г/см3. Затвердевает при –20°С. В смеси с нитроглицерином образует растворы, имеющие температуру затвердевания от –17°С до –23°С. Химически стоек; теплота взрыва 7120 кДж/кг, скорость детонации 7,4 км/с; работоспособность 600 см3. При работе с нитрогликолем нужна особая осторожность – недопустим контакт открытых поверхностей тела. Области применения такие же, как и у нитроглицерина.

 

          В табл.5 приведены технологические характеристики некоторых ВВ.

 

 

 


 

Дополнительные компоненты аммиачно-селитренных ВВ

 

В состав аммиачно-селитренных ВВ входят невзрывчатые органические горючие добавки, богатые горючими элементами (Н2, С), которые окисляются избыточным кислородом АС с выделением тепла (древесная мука, мука хлопкового жмыха). В качестве добавок используют карбамид (мочевину) - СО(NH2)2. Карбамид с аммиачной селитрой (48/52) образует смесь с температурой плавления tплавл=48°С, а при 15% карбамида смесь плавится при 75°С. Жидкой горючей добавкой (5%) является соляровое масло всех выпускаемых марок. Используют при изготовлении гранулитов. Широко применяемой в качестве твердых горючих добавок является

алюминиевая пудра или алюминиевый порошок, повышающие чувствительность ВВ, теплоту взрыва и объемную концентрацию энергии ВВ.

Алюминий часто заменяют ферросплавами, содержащими кремний, ферросилиций (содержит 20–80% Si, 1–3% Al, 0,2–0,4% Cr, 0,2–0,6% Mn) и силикокальций (содержит 10–30% Ca, 1–2% Al, 6–25% Fe).

В состав водоустойчивых ВВ входят гидрофобные добавки (парафин, стеарат кальция, асфальтит), выполняющие роль горючих компонентов. При необходимости загущения растворов АС в водосодержащих ВВ применяют полиакриламид, изаргам, гуаргам, который получают размолом бобов тропической акации.

Структурообразующие добавки применяют для создания поперечной

связи макромолекул загущающих полимеров. Для этой цели применяют сульфат хрома, бихромат натрия, сернокислый алюминий, буру, калиевые квасцы хрома и др.

Пороха коллоидного типа (пироксилиновые пороха) для взрывных работ используют сравнительно редко. При заряжании скважин пироксилиновый порох смешивают с насыщенным раствором АС, что повышает бризантность и энергию взрыва.

Конверсионными взрывчатыми веществами принято называть ВВ и средства инициирования (СИ), которые использовали в военном деле, а затем из-за истечения сроков хранения применяют в горном деле для взрывов дробления или выброса.

Все ВВ (заряды в снарядах, авиабомбах, торпедах, ракетах), а также артиллерийские и ракетные пороха имеют большой отрицательный КБ, повышенную чувствительность (ВВ с добавками гексогена, тэна, сплавов алюминия и магния), сильную электризуемость (пороха), т.е. они гораздо опаснее при их применении в промышленных взрывах.

Пороха и некоторые ВВ выделяют, кроме традиционных газов СО, NO2, а также ядовитые хлористые газы. Это позволяет использовать эти ВВ только на земной поверхности, при этом, они экологически будут вреднее промышленных.

Конверсионные ВВ более подходят (по организационным факторам) к использованию на временных объектах - сооружение дорог, каналов, плотин, взрывов на выброс и т.д.

В качестве средств инициирования можно использовать тротиловые и тротил-гексогеновые шашки (ТГ) для промежуточных детонаторов, а также более высококачественные, чем промышленные, боевые ЭД с платиноиридиевыми мостиками накаливания, а также КД и огнепроводные шпуры. В настоящее время накоплен опыт переработки и использования в качестве водоустойчивых ВВ под названием гранипоров артиллерийских порохов, выплавки из снарядов тротила, последующего его гранулирования и использования взамен гранулотола под названием конвертол. Успешные результаты получены при использовании баллиститных порохов для изготовления удлиненных кумулятивных зарядов для дробления негабаритов, резки металлоконструкций при утилизации или разрушения объемных бетонных и железобетонных сооружений.

Разработана технология переработки зарядов твердого топлива в гранулы, пригодных для производства синтетических алмазов, пороховых зарядов твердотопливных ракет в гранулы разных размеров, пригодных для заряжания обводненных скважин.

 

 


 

Нитроглицериновые ВВ

 

Высокопроцентные нитроглицериновые ВВ имеют весьма небольшое применение по сравнению с аммиачно-селитренными. Основные компоненты: нитроглицерин и нитрогликоль. Очень опасны в обращении. Из высокопроцентных нитроглицериновых ВВ имеет применение, при том весьма незначительное лишь 62% динамит. Он состоит из смеси нитроглицерина - 37% и нитрогликоля - 25%, желатинированных коллоидным хлопком - 3,5%, калийной или натровой селитры - 32%, древесной муки - 2,5%. Тугая пластичная масса ВВ патронируется в бумажные гильзы, плотность патронов 1,45. Динамит водоустойчив. Бризантность 16 мм. Чувствительность к удару 28 см. Температура замерзания tзамерз= –20°С (опасность в обращении увеличивается). Замерзшие динамиты перед употреблением надо отогревать при температуре не выше +30°С. При отогревании, а также при хранении в условиях повышенной температуры может происходить эксудация - выделение из массы патрона жидких нитроэфиров. Эксудирующий динамит столь же опасен в обращении, как и нитроглицерин. Поэтому работа с таким динамитом и его хранение запрещаются. Динамит подлежит немедленному уничтожению. Низкопроцентные нитроглицериновые ВВ содержат до 15% нитроэфиров. По условиям хранения и транспортировки они приравниваются к аммиачно-селитренным ВВ, но в обращении они опаснее, имеют некоторую токсичность.

Непредохранительные ВВ II класса. Детонит №10А и детонит М - порошкообразные непредохранительные ВВ, содержащие до 10% нитроэфиров и до 10% порошка алюминия, 8÷11% тротила и более 70% - АС. Плотность 1,1÷1,3 г/см3. Бризантность 17-18 мм. В воде заряды детонита выдерживают несколько часов без снижения качества. Эти ВВ рекомендуются при заряжании обводненных скважин и шпуров в крепких породах.

ВВ этого класса разрешается применять:

- при проведении горизонтальных, наклонных, восстающих и вертикальных выработок, а также углубке шахтных стволов с действующих горизонтов шахт при соблюдении следующих условий:

- отсутствии в забоях угольных пластов, пропластков, а также выделения метана;

- подтоплении водой забоя углубляемого ствола перед взрыванием на высоту не менее 20 см, считая по наивысшей точке забоя;

- отставании от любой точки забоя до угольного пласта (при приближении к нему) не менее 5 м, считая по нормали. После пересечения пласта забоем выработки расстояние от любой точки забоя до пласта должно быть более 20 м, считая по протяжению выработки. Если выработка закреплена монолитной крепью, исключающей поступление в нее метана из пласта, и работы по изоляции пласта ведутся по проекту, согласованному организацией – экспертом по безопасности работ, ВВ II класса могут применяться после пересечения угольных пластов и пропластков;

- в забоях, проводимых с поверхности шурфов или стволов шахт, опасных по газу или пыли, в том числе при пересечении этими забоями пластов, опасных по внезапным выбросам угля, породы и газа;

- при сотрясательном взрывании в выработках, проводимых по выбросоопасным породам при условии применения водораспылительных завес, создаваемых взрывным распылителем воды из полиэтиленовых сосудов в сочетании с туманообразующими завесами.

Предохранительные ВВ III класса. Победит ВП-4, содержит до 10% нитроэфиров, имеет хорошие детонационные свойства. В обводненных забоях и в крепких породах более эффективен, чем аммонит АП–5ЖВ. Бризантность – 14 мм, плотность 1,1÷1,3 г/см3. Температура взрыва - 2565°С. Применяется в породных забоях, опасных по метану, но не опасных по пыли.

Аммонит серный №1ЖВ, порошок желтого цвета, жирный на ощупь, сенсибилизирован нитроэфирами. Имеет низкую водоустойчивость, малую мощность, хорошую детонационную способность. Токсичен, требует повышенной осторожности в обращении, чувствителен к низким отрицательным температурам. Состав: 5% нитроэфиров, 11,5% тротила; 52% - АС. Бризантность 11 мм, температура взрыва 1570°С. Плотность ВВ в патронах 0,95÷1,05 г/см3.

Аммонит нефтяной №3ЖВ. По многим свойствам близок к аммониту серному, но отличается от последнего высокой водоустойчивостью. Состав: 9% нитроэфиров, 7% тротила, 52% АС. Бризантность 12 мм, плотность 1÷1,3 г/см3. Температура взрыва – 1925°С.

Предохранительные ВВ III класса разрешается применять:

- в забоях выработок, проводимых только по породе, в том числе и по выбросоопасным породам, при выделении метана и отсутствии взрывчатой пыли; в забоях стволов, проводимых только по породе, при их углубке с действующих горизонтов и выделении в них метана;

- при вскрытии пластов, опасных по внезапным выбросам угля и газа, до обнажения пласта при условии применения водораспылительных завес и наличии между пластом и забоем выработки породной пробки по всему сечению выработки. Размер пробки (считая по нормали) должен быть не менее 2 м при вскрытии крутых пластов и не менее 1 м при вскрытии пологих пластов.

Предохранительные ВВ IV класса. Аммонит ПЖВ–20, Аммонит Т-19. Отличаются увеличенным на 3% содержанием тротила и лучшей технологической обработкой, за счет чего несколько увеличились их взрывчатые характеристики. Выпускаются в патронированном виде; мелкодисперсные порошки светло–желтоватого цвета с видимым частицами пламегасителей. Способны детонировать при уплотнении до 1,7 г/см3. Работоспособность аммонита ПЖВ-20 – 265-280 см3; теплота взрыва 3400 кДж/кг. Скорость детонации 3,5÷4,0 км/с. Состав: 64% -АС; 16% - тротил; 20% -хлористый натрий. Работоспособность аммонита Т-19 составляет 270-280см3; теплота взрыва 3380 кДж/кг. Скорость детонации 3,6-4,3 км/с. Основные компоненты: 61%-АС; 19% -тротил; 20% -хлористый натрий. Область и условия применения: шпуровые заряды в сухих и мокрых угольных и смешанных забоях, опасных по взрыву метана и пыли (кроме забоев, отнесенных к особо опасным), а также скважинные заряды при вскрытии угольных пластов сотрясательным взрыванием. Аммониты для подземных работ выпускают в виде порошка или прессованные и только патронированные (плотность патрона 1-1,15 г/см3; диаметр патрона 32, 36 и 45 мм). Плотность прессованных аммонитов 1,4-1,58 г/см3. Патроны прессованные разминать не допустимо. Гильзы патронов делают из пергаментной бумаги, парафинируют. На гильзы патронов проставляют фабричное клеймо с обозначением наименования завода, типа ВВ и массы патрона. Массы патронов стандартного диаметра 100, 200, 250, и 300 г. Цвет гильзы (или клейма) соответствует классу ВВ. Гарантийный срок использования аммонитов предохранительных – 6 мес. Непредохранительных – 12 мес.

 

 


 

Предохранительные ВВ IV и V класса

 

Предохранительные ВВ IV класса разрешается применять:

- в угольных и смешанных забоях выработок, проводимых по угольным пластам, опасным по взрывам пыли, при отсутствии выделения метана в этих выработках;

- в угольных и смешанных забоях горизонтальных, наклонных и восстающих (до 10°) выработок, проводимых по пластам, опасным по газу и пыли,

в которых отсутствует повышенное выделение метана при взрывных работах;

- при сотрясательном взрывании, в т.ч. камуфлетном, вскрытии угольных пластов после их обнажения и последующем проведении выработок на протяжении не менее 20 м;

- в бутовых штреках с нижней подрывкой пород; в бутовых штреках с верхней подрывкой пород при относительной метанообильности выемочного участка менее 10 м3/т; при взрывной выемке угля в лавах;

- при взрывании по породе в смешанных забоях выработок, проводимых по пластам, опасным по внезапным выбросам угля и газа, при опережающем породном забое;

- для подрывки некоторых боковых пород (f>4) в смешанных забоях выработок, при условии, что предварительная выемка угля будет проводиться без применения взрывных работ.

Предохранительные ВВ V класса. Угленит Э–6. Основные компоненты: нитроэфиры – 14%; натриевая селитра – 46%; хлористый аммоний – 30%; хлористый натрий – 7%; древесная мука – 2,5%. Теплота взрыва 2680 кДж/кг; скорость детонации 2 км/с; работоспособность 130 – 170 см3; мало водоустойчив. Свободно подвешенный заряд не вызывает взрыв метано-воздушной смеси. Ионнообменные соли в зоне повышенных давлений и температур, обеспечиваемых детонацией нитроэфиров, вступают в реакцию обмена, которая сопровождается выделением инертных газов и пылевидной инертной соли: NaNO3+NH4ClNaCl+N2+2H2O+0,5O2. Избыточный кислород окисляет горючие элементы древесной муки.

Угленит №5. Теплота взрыва 1300 кДж/кг; скорость детонации 1,8 км/с; работоспособность - 50 см3. Состав основных компонентов: нитроэфиры -10%, аммиачная селитра - 14%, хлористыцй натрий - 75%, древесная мука - 1%. Применяется для перебивания стоек органной крепи в лавах и для рыхления угля, застрявшего в углеспусках.

Угленит №7 отличается от угленита №6 твердой сенсибилизирующей добавкой - окиси кремния. Предназначен для разбуривания печей в газовых шахтах и перебивания крепежных стоек. Работоспособность 80-120 см3.

Предохранительные ВВ V класса разрешается применять:

- в угольных и смешанных забоях горизонтальных, наклонных и восстающих (до 10°) выработок с повышенным выделением метана при взрывных работах. При этом в смешанных забоях по углю и по породе должно применяться одно и то же ВВ. В отдельных случаях по разрешению органа Госнадзорохрантруда, выданному на основании заключения организации-эксперта по безопасности работ, допускается применение по углю ВВ V класса, а по породе - IV класса;

- в угольных и смешанных забоях восстающих (до 10°) выработок, в которых выделяется метан, при проведении их с предварительно пробуренными скважинами, обеспечивающими проветривание выработок за счет общешахтной депрессии; в нишах лав, не отнесенных к забоям с повышенным выделением метана;

- в бутовых штреках, проводимых с верхней подрывкой пород, при относительной метанообильности выемочного участка 10 м3/т и более;

- для верхней и смешанной подрывки боковых пород (f=4 и менее) в смешанных забоях выработок с повышенным выделением метана при взрывных работах при условии, что предварительная выемка угля будет проводиться без применения взрывных работ.

Предохранительные ВВ VI класса. Угленит 12ЦБ (кроме патронов СП-12) как и угленит П-12ЦБ относятся к ионнообменным селективно-детонирующим ВВ. В качестве сенсибилизатора содержит нитроэфиры (нитроглицерин). Теплота взрыва 2300 кДж/кг; скорость детонации около 2 км/с; работоспособность 120 см3.

Предохранительные ВВ VI класса разрешается применять:

- в верхних нишах лав с повышенным выделением метана;

- в угольных забоях восстающих (до 10°) выработок, в которых выделяется метан, при проведении их без предварительно пробуренных скважин;

- в забоях выработок, проводимых по нарушенному массиву (в том числе и в забоях выработок, проводимых в присечку к нарушенному массиву), при выделении в них метана. При этом глубина шпуров должна быть не более 1,5 м, а масса шпурового заряда патронированного ВВ – не более 0,6 кг;

- для верхней и смешанной подрывки пород (f=4 и менее) в вентиляционных штреках, проводимых вслед за лавой. Шпуровые заряды в верхних нишах лав и в восстающих выработках, особо опасных по метану, изготавливаются из угленита П–12ЦБ.

Предохранительные ВВ VII класса. Ионит - это безопасное предохранительное ВВ VII класса; скорость детонации 1,8 км/с; теплота взрыва 1900 кДж/кг. В своем составе содержит компоненты такие же, как и углениты.

Предохранительные ВВ этого класса разрешается применять для следующих видов специальных взрывных работ:

- для ликвидации зависаний горной массы в углеспускных выработках и дробления негабаритов накладными зарядами;

- для взрывного перебивания деревянных стоек при посадке кровли. В забоях выработок, где имеется газовыделение или взрывчатая угольная пыль, разрешается применять только предохранительные электродетонаторы мгновенного и короткозамедленного действия.

Составы и свойства некоторых ионообменных промышленных ВВ для угольных шахт, опасных по газу и пыли, приведены в табл. 6 и 7.

В США доля потребления предохранительных ВВ составляет 1% от общего выпуска, при этом список допущенных ВВ такого класса к применению в угольной отрасли насчитывает более ста наименований: гранулированных составов - около 50 наименований, водосодержащих и эмульсионных составов - более 25, остальные - нитроэфиросодержащие ВВ. Предохранительные ВВ, в состав которых входит тротил, не производятся. В целом, ассортимент предохранительных ВВ США не типичен для применения в условиях украинских шахт, опасных по газу и пыли. С учетом принятой методики идентификации предохранительных ВВ в Украине взрывчатые вещества США относятся к III и IV классам.

Очевидно несовершенство и ограниченность существующего ассортимента предохранительных промышленных ВВ в Украине, которые более полувека представлены тремя порошкообразными патронированными аммонитами III и IV класса предохранительности, несколькими нитроэфирными ВВ V-VII класса. Однако их уровень предохранительных свойств и устойчивости против выгорания не в полной мере отвечают существующим требованиям сверхкатегорийных шахт.

 

 


 

Детонация промышленных ВВ

 

Главная особенность промышленных ВВ (ПВВ) состоит в том, что они являются физически и химически неоднородными системами. Этим объясняются особенности их детонации и некоторые аномалии относительно положений классической теории детонации конденсированных ВВ.

 

Таблица 6

Состав некоторых ионообменных предохранительных ВВ

для угольных шахт, опасных по газу и пыли

 

clip_image190

 

Большинство ПВВ представляет собой смеси материалов разнородных по химическим и физическим свойствам. Как известно, в ПВВ могут содержаться и высокоактивные индивидуальные ВВ, разлагающиеся в детонационной волне с большой скоростью, и менее активные вещества, но с сильно выраженными взрывчатыми свойствами типа тротила; вещества со слабо выраженными взрывчатыми свойствами – аммиачная селитра, динитронафталин и др., разлагающиеся при детонации со скоростью на порядок меньшей, чем мощные БВВ.

 

Таблица 7

Свойства некоторых ионообменных предохранительных ВВ

для угольных шахт, опасных по газу и пыли

 

clip_image192

 

В состав ПВВ входят горючие материалы, не обладающие взрывчатыми свойствами (алюминий, древесная мука, парафин и др.), и совершенно инертные, не принимающие участия в химических реакциях при взрыве и способные претерпевать лишь фазовые превращения такие вещества как минеральные соли (пламегасители), вода и др. С точки зрения компонентного состава промышленные ВВ являются также и кинетически неоднородными системами.

Основные особенности детонации промышленных ВВ следующие:

1. Химические реакции при взрыве промышленных смесевых ВВ происходят в несколько стадий. Типичной схемой развития химических реакций является первоначальное разложение или газификация исходных компонентов в детонационной волне и последующее взаимодействие продуктов разложения между собой или с веществами (алюминий, ферросилиций и др.), не претерпевшими на первой стадии химических или фазовых превращений. Критическая плотность, точка максимума на кривой D=f(ρ0) и другие характеристики, связанные с экстремальным видом зависимости параметров детонации от плотности, не являются константами того или иного ПВВ, определяемыми его химическим составом. Они меняются с изменением физических характеристик ВВ (размер частиц, равномерность распределения компонентов и т.д.), поперечных размеров зарядов, свойств оболочки заряда.

2. На детонационную способность ПВВ может существенно влиять равномерность смешивания компонентов. Чем мельче частицы разнородных компонентов и чем более равномерное их распределение в объеме, тем быстрее завершается их сгорание, смешивание и взаимодействие продуктов сгорания.

3. Для промышленных ВВ характерны такие явления как растянутость зоны химической реакции, большой интервал между dКР и dПР (отношение этих величин может достигать 5-10). Например, dКР тонкодисперсных аммонитов в открытых зарядах при рабочей плотности составляет 10-15 мм, а максимальная скорость детонации наблюдается при заряде диаметром 80-100 мм. Гранулированные смеси устойчиво детонируют в открытых зарядах диаметром 40-150 мм и достигают максимальной скорости детонации в зарядах диаметром более 200 мм, сильная зависимость этих характеристик от технологии изготовления; экстремальная зависимость скорости детонации и бризантности от плотности заряда при dЗ<dПР (рис.17 и 18) и ряд других.

4. Для многих ПВВ спад скорости детонации (рис.17) или бризантности (рис.18) после максимума может быть достаточно резким, а, начиная с некоторой плотности, детонация в заряде данного диаметра вообще становится неустойчивой. В связи с этим явлением для промышленных ВВ ввели понятие критической плотности ρКР. Нормальный характер зависимости D=f(ρ0) относится к области идеальной детонации.

5. Многостадийность приводит к усилению (по сравнению с индивидуальными порошковыми ВВ) зависимости критических условий распространения и параметров детонации от размеров частиц компонентов.

6. dКР и dПР зависят не только от химического состава ВВ, но и от плотно-

сти заряда. С возрастанием плотности ПВВ значения dКР и dПР увеличиваются.

7. Установлено влияние плотности ВВ на минимальный инициирующий импульс: при увеличении плотности увеличивается минимальный инициирующий импульс (МИИ), рис.19.

clip_image194

Рис.17 Зависимость скорости детонации от плотности заряда ВВ а – (1) победит ВП-3, (2) аммонит ПЖВ-20, (3) победит ВП-1; б– в зарядах аммонита ПЖВ-20 различного диаметра: (1) 100 мм, (2) 40 мм, (3) 20 мм.

 

clip_image196

Рис.18 Зависимость бризантности Б от плотности ВВ: 1 – победит №6; 2 – победит ПУ-2; 3 – аммонит №8.

clip_image198

Рис.19 Зависимость минимального инициирующего импульса при взрыве гремучей ртути от плотности заряжания победита ВП-3.

 

 


Способы и средства беспламенного взрывания

 

Все способы беспламенного взрывания основаны на быстром образовании в стальных патронах, размещенных в шпурах, газов под высоким (108 Па и более) давлением и мгновенном их выбросе в шпур. Применяется в наиболее опасных условиях угольных шахт, где не разрешается ведение взрывов даже предохранительными ВВ, для работ по углю, главным образом в лавах с машинной зарубкой, а также для подрывы некрепких боковых пород.

Наиболее эффективными являются следующие способы:

Кардокс - образование газов происходит в результате быстрого испарения жидкой углекислоты при ее интенсивном нагревании.

Гидрокс - образование газов происходит в результате химических реакций порошкообразных составов под действием нагревания;

Аэродокс - при котором в патрон, размещенный в шпуре, подается сжатый воздух под давлением (3-8)·107 Па.

Достоинства способа беспламенного взрывания:

- полная безопасность отбойки угля на шахтах, опасных по взрыву газа или пыли;

- отсутствие вредных газов;

- получение крупнокусковатого угля с уменьшением пылеобразования в 3-4 раза;

- сокращение времени на проветривание забоя при отбойке сжатым воздухом;

- высокая безопасность в обращении с патронами;

- отсутствие возможности преждевременного взрыва;

- меньшая вероятность повреждения призабойной крепи и отсутствие надобности в складах ВМ.

- улучшает гигиенические условия труда;

- обеспечивает добычу угля более высокого качества