Гидрогеология


История и этапы развития гидрогеологии

 

Гидрогеология, подобно другим областям знаний, возникла в глубокой древности из практических потребностей человека, но оформилась как наука только в конце XIX в., хотя отрывочные сведения о подземных водах можно найти еще в документах, относящихся к весьма отдаленным периодам истории развития че­ловеческого общества.

Так, на Ближнем Востоке строили колодцы большого диаметра и глубиной до 50 м уже в V-III вв. до н.э. Эти колодцы располагались вдоль караванных путей и обеспечивали водой всех путешественников.

Первые каменные водопроводы в Древней Греции и Риме изве­стны уже в VII-VI в. до н. э. На острове Самос (Греция) был сооружен подземный тоннель длиной 1200 м для водоснабжения города Мегора.

В 312 г. до н. э. был построен подземный само­течный тоннель в г. Аффлиано длиной около 5 км для перехвата воды в известняках.

Сохранились останки древних каменных колод­цев на подземные воды на территории Акрополя (окрестности Афин), в районе Эль-Джем (Тунис), на Синайском полуострове, в Алжирской Сахаре и других местах. Лечебные воды Буды (Венг­рия) были известны еще в Римскую эпоху.

Однако необходимо представить, что в это время господствовали мифические взгляды об окружающем мире.

При этом большое значение придавалось действию разных богов. Так, у шумеров наполнение рек и источников связывалось с приближением к зем­ному диску мудрейшего бога Энки, обитающего в Великой бездне Абзу.

По представлениям, бытовавшим в Палестине в XI в. до н.э. между зловещим подземным царством и плоской землей находятся подземные воды, которые по каналам проникают на поверхность и питают моря и реки.

Греческий философ-материалист Анаксимандр (610-546 гг. до н.э.) считал, что при высыхании земли образуются трещины, по которым циркулируют воздух, вода и пламя, сотря­сающие землю при выходе на поверхность.

Однако такое мировоззрение древних людей не мешало им вести практи­ческую деятельность. Огромным их достижением является изобре­тение способа сооружения водосборных галерей, берущих воду из аллювиальных отложений конусов выноса и рыхлых пород. Такие сооружения, которые, вероятно, впервые были построены более 2500 лет назад в Иране, а затем в Афганистане и Египте, имели длину в несколько километров и накапливали воду для водоснаб­жения и орошения.

В начале нашей эры был известен в общих чертах и химический состав подземных вод. Так, у одного из известных врачей первого века — у Архигенеса из Апамеимы находим деление минеральных вод на щелочные, железистые, соленые и серные.

Первые представления о генезисе и механизмах движения воды также возникли в глубокой древности. Первым ученым гидрологом можно назвать Фалеса из Милета (около 624-547 гг. до н.э.), родоначальника Ионийской школы философов. Он считал, что вода — есть начало всего и она образует основу окружающего мира, на которой "плавает суша". Все вещи возникли из воды, в которую они в конце концов превращаются. Морская вода, по его представлениям, ветром загоняется в земные недра, из которых под действием давления поднимается на поверхность, образуя родники. Хотя взгляды этого ученого далеки от реальности, тем не менее они весьма важны и поучительны для понимания развития представле­ний о роли воды в окружающем нас мире.

Близкие взгляды позже развивал древнегреческий философ Пла­тон (427-347 гг. до н.э.), который источником всей речной воды считал огромную подземную пещеру, куда по каналам поступает морская вода. Правда, некоторые историки науки утверждают, что в свое время труды Платона прочитали не совсем верно, и его идеи, оказавшие большое влияние вплоть до средних веков, восприняты неправильно. В своем труде, по их мнению, Платон якобы довольно точно описывает круговорот воды в природе.

Ученик Платона Аристотель (384-322 гг. до н.э.) переработал и углубил идеи своего учителя. Он указывал, что морская вода попадает в реки после испарения и прохождения через сложную губкообразную систему подземных пустот. Он также признавал, что в пещеры вода попадает и из атмосферных осадков. Аристотелю же принадлежат и первые идеи о причинах разнообразия состава воды, которые он полностью объяснял составом горных пород. Известен его зна­менитый постулат о том, что "воды суть такого качества, какого земли, (т.е. горные породы) через которые они текут". Он верен в своей основе только частично, но господствовал в науке без каких-либо ограничений больше двух тысячелетий.

И все же если учесть огромную роль воды в жизни древних людей, необходимо согласиться с мнением американского исследо­вателя Уиста, что греки, как ни странно, не достигли больших успехов в решении вопроса о происхождении подземных вод. Высказывается предположение, что отрицательную роль сыг­рал неверный тезис Платона и его последователей о том, что наука не должна основываться на экспериментальных наблюдениях. В результате между теорией и практикой возник огромный разрыв, который в течение 2000 лет позволял развиваться догматической науке о Земле и приводил ко многим абсурдным заключениям.

В древнем Риме также пытались разгадать природу подземных вод. Наибольший вклад внес архитектор и инженер Марк Ветрувий Поллио (вторая половина I в. до н.э.), который, вероятно, первым правильно понял сущность круговорота воды в природе. Он считал, что вода тающих снегов просачивается в землю горных областей и появляется вновь на меньших высотах в виде родников, что совершенно правильно. Поэтому нужно согласиться с мнением Е.В. Пиннекера о том, что Витрувий Поллио является родоначальником инфильтрационной теории происхождения подземных вод.

В противоположность Витрувию, Сенека (I в. н.э.) — представитель философского направления римского стоицизма, придерживался взглядов Аристотеля, но отрицал возможность инфильтрации атмосферных осадков. Неверное утверждение Сенеки о невозможности атмосферных осадков проникать в недра земли принималось в Европе учеными в течение 1500 лет. Все это время прогрессивные идеи Витрувио Поллио были практичес­ки забыты. Исключение составляют только работы французского испытателя Бернара Палисси, который в диалоге Теории и Практики, приведен­ном в его работе "Воды и родники", развивал вполне современ­ные взгляды о круговороте воды в природе.

Необходимо также назвать работы естествоиспытателя Г. Агриколы (1494-1555 гг.), который, опираясь на конкретные наблюдения за водопритоками в горных рудниках и изучая морфологию рудных тел, обосновал идеи о появлении здесь воды за счет просачивания с поверхности или сгущения водяных паров, посту­пающих снизу, принимавших непосредственное участие в рудообразовании. Идеи Г. Агриколы, к сожалению, во многом забыты и в гидрогеологии мало известны.

Тем не менее воззрения Платона и Аристотеля в интерпретации Сенеки, отрицавшего возможность питания подземных вод за счет просачивания атмосферных осадков, господствовали практически до конца XVII в. Это подтверждают работы двух влиятельных ученых своего времени: Иоганна Кеплера (1571-1630 гг.) - выдающегося немецкого астронома и Атанасиуса Кирхера (1610-1680 гг.) немец­кого естествоиспытателя и математика. Кеплер утверждал, что Зем­ля подобна большому животному, вдыхающему морскую воду, ко­торая в нем переваривается и ассимилируется. В результате обра­зуется пресная вода родников — конечный продукт обмена в организме земли. Кирхер в 1664 г. опубликовал книгу "Подзем­ный мир", которая пользовалась большой популярностью у уче­ных XVII в. Это сочинение, основанное на взглядах античных мыслителей, но приспособленное к догмам церкви, было претенци­озным по размаху воображения и непревзойденным по фантазии. Образование подземных вод он связывал с поступлением морских вод по каналам в огромные пустоты в горах, откуда она вытекает в виде родников. Водовороты, типа мистического Мальстрома у берегов Норвегии, Кирхер считал местами, где вода уходит в глубь земли через огромные отверстия в дне моря. В то же время он допускал, что морская вода в огненном жерле может нагреваться и давать родники горячих вод.

Не так к проблемам подземных вод подходили мыслители Ближнего Востока и Средней Азии. Примером являются труды выдающегося арабского философа, уроженца Хорезма Аль-Бируни (972 или 973-1048 гг.), который опередил европейских ученых на шесть-семь столетий в понимании природы фонтаниру­ющих источников и причинах гидростатического напора. Он первым догадался, что для того чтобы вода била вверх, она должна поступать из подземных хранилищ, залегающих выше места распо­ложения родника.

Другим примером является труд персидского исследователя Каради "Поиски скрытых подземных вод", в котором по сути правильно, хотя и формально, дано представление о круговороте воды, ее напоре и качестве, описаны методы поис­ков, включая бурение.

Нельзя в этой связи не отметить, что бурение для получения воды зародилось в Китае, где еще несколько тысячелетий назад был изобретен ударно-канатный способ сооружения колодцев, ко­торый в принципе не отличался от современных. Еще в III тыся­челетии до н.э. египтяне применяли колонковое ручное бурение в каменоломнях. Бурение колодцев длилось несколько лет, иногда десятилетий, но достигало огромных глубин (1200-1500 м).

В Европе бурение началось только в XII в. К 1126 г. относится проходка скважин на воду на севере Франции в провинции Артуа, которые вскрыли фонтанирующую воду. От названия этой провин­ции напорные, подземные воды стали называть артезианскими. С 1137 г. производится бурение рассолодобывающих скважин и на Руси, где техника "верчения" и обсадки стволов деревянными трубами достигла высокого уровня.

В ряде районов России в XI-XIII вв. подземные воды широко использовались не только для питьевых целей, но и для орошения земель и лечения. В XVIII в. устраиваются мощные подземные водопроводы в г. Пушкино, вблизи Санкт-Петербурга, и в Мы­тищах. По указу Петра I впервые была установлена санитарная охрана питьевых вод и назначены различные поощрения за находку лечебных вод.

По настоящему научные исследования с использованием "числа и меры" начались только в XVII в. и связаны, с именами француз­ских исследователей Пьера Перро (1608-1680 гг.) и Эдма Мариотта (1620-1684 гг.), которых по праву можно отнести к основателям современной гидрогеологии. Они на примере р. Сены количественно показали, что атмосферные осадки — источник речной воды. Ими были заложены основы изучения речного баланса, что позволило отказаться от бытовавших взглядов на проникновение морской воды в недра.

Книга П. Перро "Происхождение источников", изданная в 1674 г. считается первой работой в области научной гидрологии, трехсотлетие которой, по инициативе ЮНЕСКО, широко отмеча­лось в 1974 г. В этой книге на примере бассейна р. Сены показано, что речной сток составляет только 1/6 часть от общего количества осадков и что "последних вполне достаточно для непрерывного тока воды в реках и источниках". Несколько позже известный английский астроном и геофизик Эдмунд Галлей (1656-1742 гг.) измерил количество испарений с поверхности Средиземного моря, которое оказалось равным количеству воды, поступающей с реками. Данные Галлея послужили первым доказательством круговорота воды.

Инфильтрационную теорию происхождения подземных вод поддерживал и развивал великий русский ученый М.В. Ломоносов (1711-1765 гг.). В своей работе "О слоях Земных" (1740-1750 гг.) он показал значение подземных вод в геологических процессах и в горном деле, сформулировал ряд научных положений о подземных водах, как сложных природных растворах, обосновал возможность питания их атмосферными осадками, описал круговорот воды в при­роде, подчеркивал роль горных пород в формировании их состава, возможность использования воды при поисках рудных тел.

В это же время по инициативе Петра I и М.В. Ломоносова в России Академией наук организуются экспедиции по комплексно­му изучению природных богатств, включая подземные воды. В работах экспедиций принимали участие крупные русские ученые — С.П. Крашенинников, В.Ф. Зуев, Н.И. Лепехин, Н.Ф. Озерецковский, В.М. Севергин и др., которые собрали первые сведения о географическом распределении родников, их составе, условиях за­легания верхних водоносных горизонтах, строении бассейнов, зало­жили первые "кирпичи" в здание региональной гидрогеологии.

Надо себе, однако, представлять, что в это время вода считалась компонентом мироздания, имеющим простое строение без деления на какие-либо еще более простые соединения. И тут понадобился гений французского исследователя с очень драматичной судьбой — Антуана Лавуазье, который рядом точных опытов показал, что при горении вещество не разлагается с выделением флогистона, как думали раньше, а, наоборот, происходит присоединение кислорода. Хотя этот газ был открыт раньше К.В. Шееле и Дж. Пристли, но его место и значение не было понято. Для этого нужно было А. Лавуазье показать, что вода — это не простое вещество, а сложное соеди­нение, состоящее из кислорода и водорода. Тем самым был нанесен последний удар по теории флогистона и открыты новые пути в химию воды.

Развернувшаяся в конце XVIII в. и начале XIX в. ожесточенная дискуссия между плутонистами — сторонниками магматического образования горных пород (школа Д. Геттона) и нептунистами — сторонниками осадочно-морского происхождения горных пород (школа А. Г. Вернера), оказала большое влияние на развитие представлений о подземной гидросфере. Именно в это время (1802 г.) был предложен термин "гидрогеология" известным французским есте­ствоиспытателем Ж.Б. Ламарком (1744-1829 гг.), представителем школы нептунистов. Под гидрогеологией Ламарк понимал науку о геологической деятельности воды, явлении разрушения и отложения водой горных пород. Другой французский исследователь Эли де Бомон (1798-1874 гг.) указал на возможность формирования подземных вод за счет кристаллизующейся магмы, положив фактически начало учению об ювенильных водах.

В середине XIX в. в гидрогеологии разрабатываются законы движения подземных вод. Так, в 1856 г. французский инженер Анри Дарси (1803-1858 гг.), занимаясь проблемами водоснабжения города Дижона, установил основной закон фильтрации в пористом грунте, известном сейчас как линейный закон фильтрации, или закон Дарси, являющийся базовым в подземной гидродинамике.

В 1857 г. другой французский инженер-гидравлик Ж. Дюпюи приме­нил закон Дарси к исследованию движения подземных вод в во­доносных горизонтах и вывел ряд важных уравнений для опреде­ления водопритоков в скважинах.

Несколько позже немецкий гид­равлик Тим и австриец Ф. Форхгеймер широко использовали математические методы изучения законов движения подземных вод.

Наряду с гидродинамикой ведется глубокое изучение и хи­мии воды. В этом плане нельзя не назвать величайшее откры­тие XIX в., посвященное закону периодической системы элементов великого русского химика Д.И. Менделеева. Этот закон является одним из фундаментальных в области естествознания и является основополагающим для правильного понимания химии всех водных растворов земли и базовым для геохимии в целом и гидрогеохимии в частности.

Таким образом, ко второй половине XIX в. сформировались достаточно верные представления о происхождении, составе и рас­пространении подземных вод в верхней части земной коры, сфор­мулированы первые законы, заложены основы изучения региональ­ных закономерностей, появились первые классификации подземных вод.

На водоснабжение за счет подземных вод переводятся крупные города — Париж, Вена, Берлин, Чикаго и др. В это же время уже широко используются и изучаются минеральные, карстовые и арте­зианские воды. Появились первые гидрогеологические карты. Все это позволяет, заключить, что становление гидрогеологии, как на­уки, состоялась именно в это время. Об этом же свидетель­ствует и тот факт, что в конце XIX в. выходят на французском (А. Добре, 1887 г.) и немецком (И. Гааз, 1895 г.) языках книги, посвященные систематизированному изложению основ учения о подземных водах.